A conceptual model is presented of two MW-scale low enthalpy mine water geothermal heat pump schemes that are being developed in Tyneside, UK. The Abbotsford Road scheme (54.955° N 1.556° W) is operating (as of May 2021) at 20–30 L/s, abstracting groundwater (and heat) from an unmined Coal Measures Upper Aquifer System (UAS) and reinjecting to the deeper High Main Aquifer System (HMAS), associated with the High Main (E) coal workings and the overlying High Main Post sandstone. A similar scheme, 700 m away at Nest Road (54.959° N 1.564° W), abstracts at 40 L/s from the HMAS, recovers heat from the mine water and reinjects the thermally spent water to deeper workings associated with the Hutton (L), Harvey-Beaumont (N) (and possibly other) coal seams, termed the Deep Mined Aquifer System (DMAS). The three aquifer systems are vertically discontinuous and possess different hydraulic (storage, transmissivity and continuity) properties that would have been near-impossible to predict in advance of drilling. At the sites, 10 boreholes were drilled to obtain five usable production/reinjection boreholes. Development of mine water geothermal energy schemes thus carries a significant project risk, and also a potential ongoing maintenance burden related to iron hydroxide scaling. These do not preclude mine water geothermal as a useful low carbon heating and cooling technology, but the involvement of skilled hydrogeologists, hydrochemists, mining and groundwater engineers is a pre-requisite.
A pumping test at rates of up to 50 L s -1 was carried out in the 256 m-deep Florence Shaft of the Beckermet-Winscales-Florence haematite ore mine in Cumbria, UK, between 8th January and 25th March 2015. Drawdowns in mine water level did not exceed 4 m and the entire interconnected mine complex behaved as a single reservoir. Pumping did, however, induce drawdowns of around 1 m in the St. Bees Sandstone aquifer overlying the Carboniferous Limestone host rock. During a second phase of the pumping test, a proportion of the 11.3-12°C mine water was directed through a heat pump, which extracted up to 103 kW heat from the water and recirculated it back to the top of the shaft. Provided that an issue with elevated arsenic concentrations (20-30 lg L -1 ) can be resolved, the Florence mine could provide not only a valuable resource of high-quality water for industrial or even potable uses, it could also provide several hundred to several thousand kW of ground sourced heating and/or cooling, if a suitable demand can be identified. The ultimate constraint would be potential hydraulic impacts on the overlying St Bees Sandstone aquifer. The practice of recirculating thermally spent water in the Florence Shaft produced only a rather modest additional thermal benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.