Objective. To determine the range of antinuclear antibodies (ANA) in “healthy” individuals compared with that in patients with systemic lupus erythematosus (SLE), systemic sclerosis (SSc; scleroderma), Sjögren's syndrome (SS), rheumatoid arthritis (RA), or soft tissue rheumatism (STR). Methods. Fifteen international laboratories experienced in performing tests for ANA by indirect immunofluorescence participated in analyzing coded sera from healthy individuals and from patients in the 5 different disease groups described above. Except for the stipulation that HEp‐2 cells should be used as substrate, each laboratory used its own in‐house methodology so that the data might be expected to reflect the output of a cross‐section of worldwide ANA reference laboratories. The sera were analyzed at 4 dilutions: 1:40, 1:80, 1:160, and 1:320. Results. In healthy individuals, the frequency of ANA did not differ significantly across the 4 age subgroups spanning 20–60 years of age. This putatively normal population was ANA positive in 31.7% of individuals at 1:40 serum dilution, 13.3% at 1:80, 5.0% at 1:160, and 3.3% at 1:320. In comparison with the findings among the disease groups, a low cutoff point at 1:40 serum dilution (high sensitivity, low specificity) could have diagnostic value, since it would classify virtually all patients with SLE, SSc, or SS as ANA positive. Conversely, a high positive cutoff at 1:160 serum dilution (high specificity, low sensitivity) would be useful to confirm the presence of disease in only a portion of cases, but would be likely to exclude 95% of normal individuals. Conclusion. It is recommended that laboratories performing immunofluorescent ANA tests should report results at both the 1:40 and 1:160 dilutions, and should supply information on the percentage of normal individuals who are positive at these dilutions. A low‐titer ANA is not necessarily insignificant and might depend on at least 4 specific factors. ANA assays can be a useful discriminant in recognizing certain disease conditions, but can create misunderstanding when the limitations are not fully appreciated.
Human T-lymphotropic virus type III (HTLV-III) or lymphadenopathy-associated virus (LAV) is tropic for human T cells with the helper-inducer phenotype, as defined by reactivity with monoclonal antibodies specific for the T4 molecule. Treatment of T4+ T cells with monoclonal antibodies to T4 antigen blocks HTLV-III/LAV binding, syncytia formation, and infectivity. Thus, it has been inferred that the T4 molecule itself is a virus receptor. In the present studies, the surfaces of T4+ T cells were labeled radioactively, and then the cells were exposed to virus. After the cells were lysed, HTLV-III/LAV antibodies were found to precipitate a surface protein with a molecular weight of 58,000 (58K). By blocking and absorption experiments, this 58K protein was identified as the T4 molecule. No cell-surface structures other than the T4 molecule were involved in the antibody-antigen complex formation. Two monoclonal antibodies, each reactive with a separate epitope of the T4 molecule, were tested for their binding capacities in the presence of HTLV-III/LAV. When HTLV-III/LAV was bound to T4+ T cells, the virus blocked the binding of one of the monoclonal antibodies, T4A (OKT4A), but not of the other, T4 (OKT4). When HTLV-III/LAV was internally radiolabeled and bound to T4+ T cells which were then lysed, a viral glycoprotein of 110K (gp110) coprecipitated with the T4 molecule. The binding of gp110 to the T4 molecule may thus be a major factor in HTLV-III/LAV tropism and may prove useful in developing therapeutic or preventive measures for the acquired immune deficiency syndrome.
We have devised a simple enzyme immunoassay (EIA) that detects increasing levels of anti-HIV IgG after seroconversion and can be used for detecting recent HIV-1 infection. Use of a branched peptide that included gp41 immunodominant sequences from HIV-1 subtypes B, E, and D allowed similar detection of HIV-specific antibodies among various subtypes. Because of the competitive nature of the capture EIA, a gradual increase in the proportion of HIV-1-specific IgG in total IgG was observed for 2 years after seroconversion. This was in contrast to results obtained with the conventional EIA using the same antigen in solid phase, which plateaus soon after seroconversion. The assay was used to test 622 longitudinal specimens from 139 incident infections in the United States (subtype B) and in Thailand (subtypes B and E). The assay was also performed with an additional 8 M urea incubation step to assess the contribution of high-avidity antibodies. Normalized optical density (OD-n) was calculated (ODspecimen/ODcalibrator), using a calibrator specimen. An incremental analysis indicated that a cutoff of 1.0 OD-n and a seroconversion period of 160 days offered the best combination of sensitivity and specificity for classifying incident or long-term infections. The urea step increased the seroconversion period to 180 days with similar sensitivity and specificity. Separate analysis of B and E subtype specimens yielded the same optimal OD-n threshold and similar seroconversion periods. The assay was further validated in African specimens (subtypes A, C, and D) where the observed incidence was within 10% of the expected incidence. This assay should be useful for detecting recent HIV-1 infection and for estimating incidence among diverse HIV-1 subtypes worldwide.
CD4 (T4) is a glycoprotein of relative molecular mass 55,000 (Mr 55K) on the surface of T lymphocytes which is thought to interact with class II MHC (major histocompatibility complex) molecules, mediating efficient association of helper T cells with antigen-bearing targets. The CD4 protein is also the receptor for HIV, a T-lymphotropic RNA virus responsible for the human acquired immune deficiency syndrome (AIDS) (refs 4-7). To define the mechanisms of interaction of CD4 with the surface of antigen-presenting cells and with HIV, we have isolated the CD4 gene and expressed this gene in several different cellular environments. Here we describe an efficient expression system in which a recombinant, soluble form of CD4 (sCD4) is secreted into tissue culture supernatants. This sCD4 retains the structural and biological properties of CD4 on the cell surface, binds to the envelope glycoprotein (gp110) of HIV and inhibits the binding of virus to CD4+ lymphocytes, resulting in a striking inhibition of virus infectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.