[1] The photolysis of nitrous acid (HONO) in the early morning hours is an important source of OH radicals, the most important daytime oxidizing species. Although the importance of this mechanism has been recognized for many years, no accurate quantification of this OH source is available, and the role of HONO photolysis is often underestimated. We present measurements of HONO and its precursor NO 2 by Differential Optical Absorption Spectroscopy (DOAS) during the Berliner Ozonexperiment (BERLIOZ) field campaign in July/August 1998 at Pabstthum near Berlin, Germany. HONO concentrations, formation rates, and simultaneously measured HONO photolysis frequencies are used to calculate the total amount of OH formed by HONO photolysis during a full diurnal cycle. A comparison with the OH formation by photolysis of O 3 and HCHO and by the reaction of alkenes with ozone shows that HONO photolysis contributed up to 20% of the total OH formed in a 24 hour period during this campaign. In the morning hours, HONO photolysis was by far the most important OH source during BERLIOZ.
[1] Airborne formaldehyde (CH 2 O) measurements were made by tunable diode laser absorption spectroscopy (TDLAS) at high time resolution (1 and 10 s) and precision (±400 and ±120 parts per trillion by volume (pptv) (2s), respectively) during the Texas Air Quality Study (TexAQS) 2000. Measurement accuracy was corroborated by in-flight calibrations and zeros and by overflight comparison with a ground-based differential optical absorption spectroscopy (DOAS) system. Throughout the campaign, the highest levels of CH 2 O precursors and volatile organic compound (VOC) reactivity were measured in petrochemical plumes. Correspondingly, CH 2 O and ozone production was greatly enhanced in petrochemical plumes compared with plumes dominated by power plant and mobile source emissions. The photochemistry of several isolated petrochemical facility plumes was accurately modeled using three nonmethane hydrocarbons (NMHCs) (ethene (C 2 H 4 ), propene (C 3 H 6 ) (both anthropogenic), and isoprene (C 5 H 8 ) (biogenic)) and was in accord with standard hydroxyl radical (OH)-initiated chemistry. Measurement-inferred facility emissions of ethene and propene were far larger than reported by inventories. Substantial direct CH 2 O emissions were not detected from petrochemical facilities. The rapid production of CH 2 O and ozone observed in a highly polluted plume (30+ parts per billion by volume (ppbv) CH 2 O and 200+ ppbv ozone) originating over Houston was well replicated by a model employing only two NMHCs, ethene and propene.
Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.