A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)-including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products-now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.
The relationship between O3 and NOx (NO + NO2) which was measured during summer and winter periods at Niwot Ridge, Colorado, has been analyzed and compared to model calculations. Both model calculations and observations show that the daily O3 production per unit of NOx is greater for lower NOx. Model calculations without nonmethane hydrocarbons (NMHC) tend to underestimate the O3 production rate at NOx higher than 1.5 parts per billion by volume and show the opposite dependence on NOx. The model calculations with NMHC are consistent with the observed data in this regime and demonstrate the importance of NMHC chemistry in the O3 production. In addition, at eight other rural stations with concurrent O3 and NOx measurements in the central and eastern United States the daily O3 increase in summer also agrees with the O3 and NOx relationship predicted by the model. The consistency of the observed and model‐calculated daily summer O3 increase implies that the average O3 production in rural areas can be predicted if NOx is known. The dependence of O3 production rate on NOx deduced in this study provides the basis for a crude estimate of the total O3 production. For the United States an average summer column O3 production of about 1×1012Cm−2S−1 from anthropogenically emitted NOx and NMHC is estimated. This photochemical production is roughly 20 times the average cross‐tropopause O3 flux. Production of O3 from NOx that is emitted from natural sources in the United States is estimated to range from 1.9×1011 to 12×1011 cm−2 s−1, which is somewhat smaller than ozone production from anthropogenic NOx sources. Extrapolation to the entire northern hemisphere shows that in the summer, 3 times as much O3 is generated from natural precursors as those of anthropogenic origin. The winter daily O3 production rate was found to be about 10% of the summer value at the same NOx level. However, because of longer NOx lifetime in the winter, the integrated O3 production over the lifetime of NOx may be comparable to the summer value. Moreover, because the natural NOx sources are substantially smaller in the winter, the wintertime O3 budget in the northern hemisphere should be dominated by ozone production from anthropogenic ozone precursors. The photochemical lifetime of O3 in the winter in the mid‐latitude is approximately 200 days. We propose that this long lifetime allows anthropogenically produced O3 to accumulate and contribute substantially to the observed spring maximum that is usually attributed to stratospheric intrusion. Furthermore, the anthropogenic O3 may be transported not only zonally but also to lower latitudes. Thus the long‐term interannual increase in O3, observed in the winter and spring seasons at Mauna Loa, may be due to the same anthropogenic influences as the similar winter trend observed at Hohenpeissenberg, Germany.
The multispecies analysis of daily air samples collected at the NOAA Boulder Atmospheric Observatory (BAO) in Weld County in northeastern Colorado since 2007 shows highly correlated alkane enhancements caused by a regionally distributed mix of sources in the Denver‐Julesburg Basin. To further characterize the emissions of methane and non‐methane hydrocarbons (propane, n‐butane, i‐pentane, n‐pentane and benzene) around BAO, a pilot study involving automobile‐based surveys was carried out during the summer of 2008. A mix of venting emissions (leaks) of raw natural gas and flashing emissions from condensate storage tanks can explain the alkane ratios we observe in air masses impacted by oil and gas operations in northeastern Colorado. Using the WRAP Phase III inventory of total volatile organic compound (VOC) emissions from oil and gas exploration, production and processing, together with flashing and venting emission speciation profiles provided by State agencies or the oil and gas industry, we derive a range of bottom‐up speciated emissions for Weld County in 2008. We use the observed ambient molar ratios and flashing and venting emissions data to calculate top‐down scenarios for the amount of natural gas leaked to the atmosphere and the associated methane and non‐methane emissions. Our analysis suggests that the emissions of the species we measured are most likely underestimated in current inventories and that the uncertainties attached to these estimates can be as high as a factor of two.
Methane (CH4) emissions from natural gas production are not well quantified and have the potential to offset the climate benefits of natural gas over other fossil fuels. We use atmospheric measurements in a mass balance approach to estimate CH4 emissions of 55 ± 15 × 103 kg h−1 from a natural gas and oil production field in Uintah County, Utah, on 1 day: 3 February 2012. This emission rate corresponds to 6.2%–11.7% (1σ) of average hourly natural gas production in Uintah County in the month of February. This study demonstrates the mass balance technique as a valuable tool for estimating emissions from oil and gas production regions and illustrates the need for further atmospheric measurements to determine the representativeness of our single‐day estimate and to better assess inventories of CH4 emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.