Abstract-Neural Networks are based on the parallel architecture and inspired from human brains. Neural networks are a form of multiprocessor computer system, with simple processing elements, a high degree of interconnection, simple scalar messages and adaptive interaction between elements. One such application is image compression. Image compression is a process which minimizes the size of an image file without degrading the quality of the image to an unacceptable level. It also reduces the time required for images to be sent over the internet or downloaded from web pages. This paper proposes an Improved Backpropagation Neural Network Technique, for lossless image compression. The system also proves that the improved Backpropagation Neural Network Technique works better than the existing Huffman Coding Technique for lossless image compression by considering X-Ray images based on three metrics such as compression ratio, transmission time and compression performance. Experimental results are presented and compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.