Drying is a complex phenomenon and study of drying kinetics and modelling is very important for describing the moisture movement with respect to time and predicting the dryer performance. Considering this fact, vacuum drying characteristics of cherry pepper was studied at different drying temperatures (50, 60 and 70oC). Cherry pepper were dried from initial moisture content of about 400% (dry basis) to 13 – 14.5% (dry basis) at different temperatures at 630 mm Hg vacuum. Time required to dry cherry peppers at 50, 60 and 70p C plate temperatures were 19 h, 9.75 h and 8 h respectively. Moisture reduction of cherry pepper at various temperatures was modelled using thin-layer models viz. Lewis, Page, Modified Page and Henderson and Pabis model. Based on highest value of coefficient of determination, lowest values of reduced chi square and root mean square error, Modified Page model was found to be the best fit. Moisture diffusivity increased from 6.27 × 10-10 to 1.9× 10-9m2s-1 as plate temperature increased from 50 – 70oC. Activation energy was estimated to be 50.98 kJkgmol-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.