Increasing attention is being devoted to the airborne emissions resulting from a variety of manufacturing processes because of health, safety, and environmental concerns. In this two-part paper, a model is presented for the amount of cutting fluid mist produced by the interaction of the fluid with the rotating cylindrical workpiece during a turning operation. This model is based on relationships that describe cutting fluid atomization, droplet settling, and droplet evaporation. Experiments are performed to validate the model. In Part 1 of the paper, the emphasis is on model development. In the model, thin film theory is used to determine the maximum fluid load that can be supported by a rotating cylindrical workpiece; rotating disk atomization theory is applied to the turning process to predict the mean size of the droplets generated by atomization; and expressions for both the evaporation and settling behavior are established. Droplet size distribution and mass concentration predictions are used to characterize the fluid mist. Model predictions indicate that the droplet mean diameter is affected by both fluid properties and operating conditions, with cutting speed having the most significant affect. Model predictions and experimental results show that the number distribution of droplets within the control volume is dominated by small droplets because of the settling and evaporation phenomena. In Part 2 of the paper, the cutting fluid mist behavior model is validated using the results obtained from a series of experiments.
In Part 1 of this paper a model was developed to describe the formation mechanisms and dynamic behavior of cutting fluid mist. This part of the paper focuses on an experimental investigation of the mist generated by the interaction of the fluid with the rotating cylindrical workpiece during a turning operation and the simulation of the dynamic behavior of the mist droplets, resulting in the prediction of the droplet size distribution and the mass concentration within the machining environment. These simulation results are compared to experimental measurements in order to validate the theoretical model presented in Part 1 of the paper. It is observed that the model predictions accurately characterize the observed experimental behavior.
The use of cutting fluids in machining operations is being carefully scrutinized by industry for several reasons, including its overall cost in the manufacturing process and its impact on worker health. Given the concerns associated with the use of cutting fluids, a number of experimental and analytical research efforts are being conducted to gain an understanding of the role of these fluids in various machining processes. The knowledge gained by this research will aid in the development and implementation of strategies to reduce or eliminate the negative effects of cutting fluids, while maintaining their beneficial role. This article presents the results of designed experiments focused on determining the significant variables that influence air quality during turning operations, as well as characterize the aerosol emissions associated with wet and dry turning. Air quality is characterized by measuring the mass concentration and particle size distribution of the dust and mist created during a set of machining experiments. The relative importance of vaporization/condensation and atomization as mist-generating mechanisms is also explored. The experiments revealed that spindle speed has a dominating effect on both mist mass concentration and aerodynamic particle size. Analytical models are presented that predict the average droplet size of the mist generated by atomization and are used to investigate droplet size trends for various cutting fluids and machining parameters. The results predicted by the models are consistent with the expected trends.
Airborne inhalable particulates in the workplace can represent a significant health hazard, and one of the primary sources of particles is mist produced through the application of cutting fluids in machining operations. One of the principal mechanisms associated with cutting fluid mist formation is atomization. Atomization is studied by applying cutting fluid to a rotating workpiece such as found in a turning process. In order to properly study the atomization mechanism, an imaging system was developed. This system extends the size measurement range typically achievable with aerosol sampling devices to include larger particles. Experimental observations reveal that workpiece rotation speed and cutting fluid flow rate have significant effects on the size of the droplets produced by the atomization mechanism. With respect to atomization, the technical literature describes models for fluid interaction with the rotating workpiece and droplet formation via drop, ligament, and film formation modes. Experimental measurements are compared with model predictions. For a range of rotation speeds and fluid application flow rates, the experimental data are seen to compare favorably with the model predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.