SUMMARYFuture e-Health systems will consist of low-power on-body wireless sensors attached to mobile users that interact with an ubiquitous computing environment to monitor the health and well being of patients in hospitals or at home. Patients or health practitioners have very little technical computing expertise so these systems need to be self-configuring and self-managing with little or no user input. More importantly, they should adapt autonomously to changes resulting from user activity, device failure, and the addition or loss of services. We propose the Self-Managed Cell (SMC) as an architectural pattern for all such types of ubiquitous computing applications and use an e-Health application in which on-body sensors are used to monitor a patient living in their home as an exemplar. We describe the services comprising the SMC and discuss cross-SMC interactions as well as the composition of SMCs into larger structures.
Abstract. Publish/subscribe is considered one of the most important interaction styles for the explosive market of enterprise application integration. Producers publish information on a software bus and consumers subscribe to the information they want to receive from that bus. The decoupling nature of the interaction between the publishers and the subscribers is not only important for enterprise computing products but also for many emerging e-commerce and telecommunication applications. It is often claimed that object-orientation is inherently incompatible with the publish/subscribe interaction style. This flawed argument is due to the persistent confusion between object-orientation as a modeling discipline and the specific request/reply mechanism promoted by CORBA-like middleware systems. This paper describes object-oriented abstractions for publish/subscribe interaction in the form of Distributed Asynchronous Collections (DACs). DACs are general enough to capture the commonalities of various publish/subscribe interaction styles, and flexible enough to allow the exploitation of the differences between these flavors.
Abstract-Wireless home networks are increasingly deployed in people's homes worldwide. Unfortunately, home networks have evolved using protocols designed for backbone and enterprise networks, which are quite different in scale and character to home networks. We believe this evolution is at the heart of widely observed problems experienced by users managing and using their home networks. In this paper we investigate redesign of the home router to exploit the distinct social and physical characteristics of the home.We extract two key requirements from a range of ethnographic studies: users desire greater understanding of and control over their networks' behaviour. We present our design for a home router that focuses on monitoring and controlling network traffic flows, and so provides a platform for building user interfaces that satisfy these two user requirements. We describe and evaluate our prototype which uses NOX and OpenFlow to provide per-flow control, and a custom DHCP implementation to enable traffic isolation and accurate measurement from the IP layer. It also provides finer-grained per-flow control through interception of wireless association and DNS resolution. We evaluate the impact of these modifications, and thus the applicability of flow-based network management in the home.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.