The control of induction motors through an inverter has many advantages. By changing the frequency and size of the supply voltage, a better efficiency at load conditions can be achieved outside the rated operation. In this study, tests were conducted on a laboratory device for a three-phase induction motor of 1Hp capacity that was driven by an inverter. The induction machine loading was done via a magnetic brakes machine, while all the necessary measuring devices were used in order to record the necessary electrical magnitudes with accuracy and detail. Through specific tests, the components of the detailed electrical equivalent circuit were determined. The vector control technique was used on inverter operation. Through this study, the authors concluded that a drive system can be driven on different frequency levels without a great loss of torque. Furthermore, energy can be saved by operating in lower frequencies for smaller loading, having an equally satisfactory level of performance. It is also worth to mention the friendliness of the inverter to control the motor speed, the smooth (soft) starting and the high degree of efficiency in all frequency ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.