We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Obser-\ud vatory, on-board the Japanese Experiment Module of the International Space Station. Designed as a mis-\ud sion to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earth’s nighttime\ud atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by\ud ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based obser-\ud vation and we compute the annual exposure in nadir observation. The results are based on studies of the\ud expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of\ud clouds and different types of background light. We show that the annual exposure is about one order of\ud magnitude higher than those of the presently operating ground-based observatories
Gamma-ray bursts are the strongest explosions in the Universe since the Big Bang, believed to be produced either in forming black holes at the end of massive star evolution [1, 2, 3] or merging of compact objects [4]. Spectral and timing properties of gamma-ray bursts suggest that the observed bright gamma-rays are produced in the most relativistic jets in the Universe [4]; however, the physical properties, especially the structure and magnetic topologies in the jets are still not well known, despite several decades of studies. It is widely believed that precise measurements of the polarization properties of gamma-ray bursts should provide crucial information on the highly relativistic jets [5]. As a result there have been many reports of gamma-ray burst polarization measurements with diverse results, see [1], however many such measurements suffered from substantial uncertainties, mostly systematic [7, and references therein]. After the first successful measurements by the GAP and COSI instruments [2, 3, 4], here we report a statistically meaningful sample of precise polarization measurements, obtained with the dedicated gamma-ray burst polarimeter, POLAR onboard China's Tiangong-2 spacelab. Our results suggest that the gamma-ray emission is at most polarized at a level lower than some popular models have predicted; although our results also show intrapulse evolution of the polarization angle. This indicates that the low polarization degrees could be due to an evolving polarization angle during a gamma-ray burst.POLAR is a dedicated Gamma-ray Burst (GRB) polarization detection experiment onboard China's Tiangong-2 spacelab [11], launched on Sept. 15th, 2016 and stopped operation on March 31, 2017. POLAR detected 55 GRBs with high significance. In order to make statistically significant GRB polarization measurements and yet with negligible systematic errors, we select a subsample of five GRBs for detailed analysis of their polarization properties; please refer to the supplementary information (SI) for the sample selection criteria and the properties of the five selected GRBs. We employ a straight forward χ 2 based analysis, similar to that successfully employed in [4], to study the polarization properties of the five GRBs, while a Bayesian method is employed to accurately determine the credible regions of the measurements. The studies rely on extensive ground and in-orbit calibration data and Monte-Carlo simulations matching the calibration data [12, 13]. Please refer to the methods section for details of the methodology and analysis.In Figure 1, we show the measured modulation curves of the five GRBs integrated over the whole GRB duration, together with the best fitting simulated modulation curves from linear polarization and fitting residuals. All fittings are statistically acceptable with no significant systematic deviations. In Figure 2, we show the 2-D posterior distributions of the five GRBs, i.e., the posterior probability as functions of both polarization angle (PA) and degree (PD). Clearly the measured P...
The POLAR detector is a space based Gamma Ray Burst (GRB) polarimeter with a wide field of view, which covers almost half the sky. The instrument uses Compton scattering of gamma rays on a plastic scintillator hodoscope to measure the polarization of the incoming photons. The instrument has been successfully launched on board of the Chinese space laboratory Tiangong 2 on September 15, 2016. The construction of the instrument components is described in this article. Details are provided on problems encountered during the construction phase and their solutions. Initial performance of the instrument in orbit is as expected from ground tests and Monte Carlo simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.