The structure and properties of the ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) have been examined as a function of hydration. By differential scanning calorimetry, DHPC exhibits an endothermic (chain melting) transition with the transition temperature (limiting value, 44.2 degrees C) and enthalpy (limiting value, delta H = 8.0 kcal/mol) being hydration dependent. For hydration values greater than 30 wt % water, DHPC exhibits a pretransition at approximately 36 degrees C (delta H = 1.1 kcal/mol) and a subtransition at approximately 5 degrees C (delta H = 0.2 kcal/mol). By X-ray diffraction, at 22 degrees C DHPC exhibits a normal bilayer gel structure with the bilayer periodicity increasing from 58.0 to 62.5 A over the hydration range 9.5-25.4% water. At 30-32% water, two coexisting gel phases are observed with d = 63-64 A and d = 44-45 A; at higher hydration, only the latter phase is present, reaching a limiting d = 47.0 A at 37.5% water. Two different gel phases clearly exist at low and high hydrations. Electron density profiles at low hydration (9.5-25.4%) show a bilayer thickness dp-p = 46 A, whereas at greater than 32% water the bilayer thickness is markedly reduced, dp-p = 30 A. These and other structural parameters indicate a hydration-dependent gel----gel structural transition between a normal bilayer (two chains per polar group) and the chain-interdigitated bilayer (four chains per polar group) arrangement described previously for DHPC [Ruocco, M. J., Siminovitch, D. J., & Griffin, R. G. (1985) Biochemistry 24, 2406-2411].(ABSTRACT TRUNCATED AT 250 WORDS)
Mixed phospholipid systems of ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) and ester-linked 1,2-dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry and X-ray diffraction. At maximum hydration (60 wt % water), DHPC shows three reversible transitions: a main (chain melting) transition, TM = 44.2 degrees C; a pretransition, TP = 36.2 degrees C; and a subtransition, TS = 5.5 degrees C. DPPC shows two reversible transitions: TM = 41.3 degrees C and TP = 36.5 degrees C. TM decreases linearly from 44.2 to 41.3 degrees C as DPPC is incorporated into DHPC bilayers; TP exhibits eutectic behavior, decreasing sharply to reach 23.3 degrees C at 40.4 mol % DPPC and then increasing over the range 40-100 mol % DPPC; TS remains constant at 4-5 degrees C and is not observed at greater than 20 mol % DPPC. At 50 degrees C, X-ray diffraction shows a liquid-crystalline bilayer L alpha phase at all DHPC:DPPC mole ratios. At 22 degrees C, DHPC shows an interdigitated bilayer gel L beta phase (bilayer periodicity d = 47.0 A) into which approximately 30 mol % DPPC can be incorporated. Above 30 mol % DPPC, a noninterdigitated gel L beta' phase (d = 64-66 A) is observed. Thus, at T greater than TM, DHPC and DPPC are miscible in all proportions in an L alpha bilayer phase. In contrast, a composition-dependent gel----gel transition between interdigitated and noninterdigitated bilayers is observed at T less than TP, and this leads to eutectic behavior of the DHPC/DPPC system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.