Genes encoding enzymes in the threonine/methionine biosynthetic pathway were cloned and used to investigate their transcriptional response to signals known to affect gene expression on the basis of enzyme specific-activities. Four major responses were evident: strong repression by methionine of MET3, MET5 and MET14, as previously described for MET3, MET2 and MET25; weak repression by methionine of MET6; weak stimulation by methionine but no response to threonine was seen for THR1, HOM2 and HOM3; no response to any of the signals tested, for HOM6 and MES1. In a BOR3 mutant, THR1, HOM2 and HOM3 mRNA levels were increased slightly. The stimulation of transcription by methionine for HOM2, HOM3 and THR1 is mediated by the GCN4 gene product and hence these genes are under the general amino acid control. In addition to the strong repression by methionine, MET5 is also regulated by the general control.
There are high amounts of hydrogen sulfide in deep periodontal pockets. This volatile sulfur compound may be formed from L-cysteine, but only low levels of this amino acid can be expected to be present in periodontal pockets. Glutathione, L-gamma-glutamyl-L-cysteinylglycine, is in high concentration in most tissue cells, and this tripeptide may be more readily available as a source of hydrogen sulfide formation in the pockets. The ability of 37 different species of oral bacteria to utilize glutathione in hydrogen sulfide formation was studied. Of these species, only 2 species of Peptostreptococcus and 5 species of Fusobacterium formed high amounts of hydrogen sulfide from glutathione within 24 h. Since the initial rate of hydrogen sulfide formation was more than 5 times higher in Peptostreptococcus micros than in any of the other bacterial species, the kinetics of sulfide formation from glutathione by P. micros was further elucidated. The formation of sulfide followed quite closely hyperbolic Michaelis-Menten kinetics. The maximal initial rate of sulfide formation (Vmax) was 163 +/- 2 nmol sulfide per minute per milligram of cellular protein. Half maximal initial rate (Km) was obtained at 7.4 +/- 0.8 microM glutathione. The initial rate of sulfide formation from L-cysteine was much slower and was almost proportional to L-cysteine concentration. This difference in kinetics of sulfide formation between glutathione and L-cysteine strongly suggested that glutathione was actively transported into the cell, whereas the transport of L-cysteine was more or less controlled by diffusion. The sulfide formation from the dipeptide L-cysteinylglycine also followed quite closely hyperbolic Michaelis-Menten kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)
Although fusobacteria use amino acids and peptides as energy source, it is not known whether they are able to actively transport peptides into the cell. In the present study the tripeptide glutathione was used as a model substance to investigate peptide uptake in Fusobacterium nucleatum subsp. nucleatum. Cells harvested after 2 days of growth on blood agar or in their exponential growth phase in broth were suspended in buffer with glutathione, L-cysteinylglycine and L-cysteine. As a measure of cell uptake, the formation of hydrogen sulfide was followed. Cells from blood agar had a low capacity to form hydrogen sulfide from the tripeptide glutathione and the dipeptide L-cysteinylglycine. However, hydrogen sulfide was formed from L-cysteinylglycine, but not from glutathione or from L-cysteine, by cells grown in broth in such a way that it strongly indicated an active transport of L-cysteinylglycine with a Km of 18 microM. Hydrogen sulfide was efficiently formed from glutathione by cells grown in broth in the presence 1 mM glutathione. In these cells a glycylglycine-dependent L-gamma-glutamyl peptidase activity was induced. It is probable that the efficient utilization of glutathione for hydrogen sulfide formation mirrored the uptake of L-cysteinylglycine after an L-gamma-glutamyl peptidase had split L-glutamate off from glutathione.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.