Addressing the still open question of the prebiotic origin of sequential macromolecules (peptides, nucleic acids) on the primitive Earth, we describe a molecular engine (the primary pump), which works at ambient temperature and continuously generates, elongates and complexifies sequential peptides. This new scenario is based on a cyclic reaction sequence, whose keystep is the activation of amino acids into their N‐carboxyanhydrides (NCA) through nitrosation by NOx. This process could have taken place on tidal beaches; it requires a buffered ocean, emerged land and a nitrosating atmosphere. With the help of geochemical studies and computer simulations of atmosphere photochemistry, we show that the primitive Earth during the Hadean may have satisfied all these requirements. © 2001 Society of Chemical Industry.
Poly(Nepsilon-trifluoroacetyl-L-lysine) was used as a model solute to investigate the potential of nonaqueous capillary electrophoresis (NACE) for the characterization of synthetic organic polymers. The information obtained by NACE was compared to that derived from size exclusion chromatography (SEC) experiments, and the two techniques were found to be complimentary for polymer characterization. On one hand, NACE permitted (i) the separation of oligomers according to their molar mass and (ii) the separation of the polymers according to the nature of the end groups. On the other hand, SEC experiments were used for the characterization of the molar mass distribution for higher molar masses. Due to the tendency of the solutes (polypeptides) to adsorb onto the fused-silica capillary wall, careful attention was paid to the rinsing procedure of the capillary between runs in order to keep the capillary surface clean. For that purpose, the use of electrophoretic desorption under denaturating conditions was very effective. Optimization of the separation was performed by studying (i) the influence of the proportion of methanol in a methanoVacetonitrile mixture and (ii) the influence of acetic acid concentration in the background electrolyte. Highly resolved separation of the oligomers (up to a degree of polymerization n of approximately 50) was obtained by adding trifluoroacetic acid to the electrolyte. Important information concerning the polymer conformations could be obtained from the mobility data. Two different plots relating the effective mobility data to the degree of polymerization were proposed for monitoring the changes in polymer conformations as a function of the number of monomers.
Our previous kinetic and thermodynamic studies upon the reactional system HCHO/HCN/NH3 in aqueous solutions are completed. In the assumed prebiotic conditions of the primitive earth ([HCHO] and [HCN] near 1 g L-1, T = 25 degrees C, pH = 8, [NH3] very low), this system leads to 99.9% of alpha-hydroxyacetonitrile and 0.1% of alpha-aminoacetonitrile (precursor of the alpha-amino acid). The classical base-catalyzed hydration of nitriles, slow and not selective, can not modify significantly this proportion. On the contrary, we found two specific and efficient reactions of alpha-aminonitriles which shift the initial equilibrium in favor of the alpha-aminonitrile pathway. The first reaction catalyzed by formaldehyde generates alpha-aminoamides, precursors of alpha-aminoacids. The second reaction catalyzed by carbon dioxide affords hydantoins, precursors of N-carbamoyl-alpha-aminoacids. In the primitive hydrosphere, where the concentration in carbon dioxide was estimated to be higher than that of formaldehyde, the formation of hydantoins was consequently more efficient. The rates of hydrolysis of the alpha-aminoacetamide and of the hydantoin at pH 8 being very similar, the synthesis of the N-carbamoyl-alpha-amino acid seems then to be the fatal issue of the HCHO/HCN/NH3 system that nature used to perform its evolution. These N-protected alpha-amino acids offer new perspectives in prebiotic chemistry, in particular for the emergence of peptides on the prebiotic earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.