We studied effects of elastic tunneling on the density of states and on localization in disordered systems of interacting localized electrons. We present evidence which suggests that Coulomb interactions suppress localization, and that quantum effects must be considered in many experimental situations where they were neglected.
Coccidioidomycosis (Valley Fever) is a fungal infection found in the southwestern United States, northern Mexico, and some places in Central and South America. The fungi that cause it (Coccidioides immitis and Coccidioides posadasii) are normally soil dwelling, but, if disturbed, become airborne and infect the host when their spores are inhaled. It is thus natural to surmise that weather conditions, which foster the growth and dispersal of Coccidioides, must have an effect on the number of cases in the endemic areas. This article reviews our attempts to date at quantifying this relationship in Kern County, California (where C. immitis is endemic). We have examined the effect on incidence resulting from precipitation, surface temperature, and wind speed. We have performed our studies by means of a simple linear correlation analysis, and by a generalized autoregressive moving average model. Our first analysis suggests that linear correlations between climatic parameters and incidence are weak; our second analysis indicates that incidence can be predicted largely by considering only the previous history of incidence in the county-the inclusion of climate-or weather-related time sequences improves the model only to a relatively minor extent. Our work therefore suggests that incidence fluctuations (about a seasonally varying background value) are related to biological and/or anthropogenic reasons, and not so much to weather or climate anomalies.
Coccidioidomycosis (valley fever) is a fungal infection found in the southwestern US, northern Mexico, and some places in Central and South America. The fungus that causes it (Coccidioides immitis) is normally soildwelling but, if disturbed, becomes air-borne and infects the host when its spores are inhaled. It is thus natural to surmise that weather conditions that foster the growth and dispersal of the fungus must have an effect on the number of cases in the endemic areas. We present here an attempt at the modeling of valley fever incidence in Kern County, California, by the implementation of a generalized auto regressive moving average (GARMA) model. We show that the number of valley fever cases can be predicted mainly by considering only the previous history of incidence rates in the county. The inclusion of weather-related time sequences improves the model only to a relatively minor extent. This suggests that fluctuations of incidence rates (about a seasonally varying background value) are related to biological and/or anthropogenic reasons, and not so much to weather anomalies.
Coccidioidomycosis is a fungal disease acquired through the inhalation of spores of Coccidioides spp., which afflicts primarily humans and other mammals. It is endemic to areas in the southwestern United States, including the San Joaquin Valley portion of Kern County, California, our region of interest (ROI). Recently, incidence of coccidioidomycosis, also known as valley fever, has increased significantly, and several factors including climate change have been suggested as possible drivers for this observation. Up to date details about the ecological niche of C. immitis have escaped full characterization. In our project, we chose a three-step approach to investigate this niche: 1) We examined Landsat-5-Thematic-Mapper multispectral images of our ROI by using training pixels at a 750 m×750 m section of Sharktooth Hill, a site confirmed to be a C. immitis growth site, to implement a Maximum Likelihood Classification scheme to map out the locations that could be suitable to support the growth of the pathogen; 2) We used the websoilsurvey database of the US Department of Agriculture to obtain soil parameter data; and 3) We investigated soil samples from 23 sites around Bakersfield, California using a multiplex Polymerase Chain Reaction (PCR) based method to detect the pathogen. Our results indicated that a combination of satellite imagery, soil type information, and multiplex PCR are powerful tools to predict and identify growth sites of C. immitis. This approach can be used as a basis for systematic sampling and investigation of soils to detect Coccidioides spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.