Digital photonic sensors have greatly evolved to maximize sensitivity and spatial, spectral, and temporal imaging resolution. For low-energy photons, new designs have generated new types of noise that degrade the formed-image signal-to-noise ratio to values lower than 1. Fixed-pattern noise (FPN), which is produced by the non-uniform focal-plane-array optoelectronics response, is an ill-posed problem in infrared and hyperspectral imaging science. Here, we experimentally show that the FPN behaves as an object at a depth of infinity when a light field is captured by an imaging system. The proposed method is based on the capture of the light field of a scene and digital refocusing to any nearby objects in the scene. Unlike standard techniques for FPN reduction, our method does not require knowledge of the physical parameters of the optoelectronic transducer, the motion scene, or the presence of off-line blackbody sources. The ability of the proposed method to reduce FPN is measured by evaluating the structural similarity (SSIM) index employing a blackbody-based FPN reduction technique as a reference. This new interpretation of the FPN opens avenues to create new cameras for low-energy photons with the ability to perform denoising by digital refocusing.
A correlated human red blood cell membrane fluctuation dependent on d-glucose concentration was found with dual time resolved membrane fluctuation spectroscopy (D-TRMFS). This new technique is a modified version of the dual optical tweezers method that has been adapted to measure the mechanical properties of red blood cells (RBCs) at distant membrane points simultaneously, enabling correlation analysis. Mechanical parameters under different d-glucose concentrations were obtained from direct membrane flickering measurements, complemented with membrane fluidity measurements using Laurdan Generalized Polarization (GP) Microscopy. Our results show an increase in the fluctuation amplitude of the lipid bilayer, and a decline in tension value, bending modulus and fluidity as d-glucose concentration increases. Metabolic mechanisms are proposed as explanations for the results.
Our results account of mechanical and fluidity changes as the concentration of glucose increases up to 25mM. Fluctuation amplitude, curvature and viscosity modulus of the lipid bilayer increase, and bending modulus and tension value decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.