This review surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. We argue that satellite observations not currently used for operational drought monitoring, such as near-surface air relative humidity data from the Atmospheric Infrared Sounder mission, provide opportunities to improve early drought warning. Current and future satellite missions offer opportunities to develop composite and multi-indicator drought models. While there are immense opportunities, there are major challenges including data continuity, unquantified uncertainty, sensor changes, and community acceptability. One of the major limitations of many of the currently available satellite observations is their short length of record. A number of relevant satellite missions and sensors (e.g., the Gravity Recovery and Climate Experiment) provide only a decade of data, which may not be sufficient to study droughts from a climate perspective. However, they still provide valuable information about relevant hydrologic and ecological processes linked to this natural hazard. Therefore, there is a need for models and algorithms that combine multiple data sets and/or assimilate satellite observations into model simulations to generate long-term climate data records. Finally, the study identifies a major gap in indicators for describing drought impacts on the carbon and nitrogen cycle, which are fundamental to assessing drought impacts on ecosystems.
[1] Using NASA's A-Train satellite measurements, we evaluate the accuracy of cloud water content (CWC) and water vapor mixing ratio (H 2 O) outputs from 19 climate models submitted to the Phase 5 of Coupled Model Intercomparison Project (CMIP5), and assess improvements relative to their counterparts for the earlier CMIP3. We find more than half of the models show improvements from CMIP3 to CMIP5 in simulating column-integrated cloud amount, while changes in water vapor simulation are insignificant. For the 19 CMIP5 models, the model spreads and their differences from the observations are larger in the upper troposphere (UT) than in the lower or middle troposphere (L/MT). The modeled mean CWCs over tropical oceans range from $3% to $15Â of the observations in the UT and 40% to 2Â of the observations in the L/MT. For modeled H 2 Os, the mean values over tropical oceans range from $1% to 2Â of the observations in the UT and within 10% of the observations in the L/MT. The spatial distributions of clouds at 215 hPa are relatively well-correlated with observations, noticeably better than those for the L/MT clouds. Although both water vapor and clouds are better simulated in the L/MT than in the UT, there is no apparent correlation between the model biases in clouds and water vapor. Numerical scores are used to compare different model performances in regards to spatial mean, variance and distribution of CWC and H 2 O over tropical oceans. Model performances at each pressure level are ranked according to the average of all the relevant scores for that level.Citation: Jiang, J. H., et al. (2012), Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observations,
A better conceptual understanding and more realistic parameterizations of convective boundary layers in climate and weather prediction models have been major challenges in meteorological research. In particular, parameterizations of the dry convective boundary layer, in spite of the absence of water phase-changes and its consequent simplicity as compared to moist convection, typically suffer from problems in attempting to represent realistically the boundary layer growth and what is often referred to as countergradient fluxes. The eddy-diffusivity (ED) approach has been relatively successful in representing some characteristics of neutral boundary layers and surface layers in general. The mass-flux (MF) approach, on the other hand, has been used for the parameterization of shallow and deep moist convection. In this paper, a new approach that relies on a combination of the ED and MF parameterizations (EDMF) is proposed for the dry convective boundary layer. It is shown that the EDMF approach follows naturally from a decomposition of the turbulent fluxes into 1) a part that includes strong organized updrafts, and 2) a remaining turbulent field. At the basis of the EDMF approach is the concept that nonlocal subgrid transport due to the strong updrafts is taken into account by the MF approach, while the remaining transport is taken into account by an ED closure. Large-eddy simulation (LES) results of the dry convective boundary layer are used to support the theoretical framework of this new approach and to determine the parameters of the EDMF model. The performance of the new formulation is evaluated against LES results, and it is shown that the EDMF closure is able to reproduce the main properties of dry convective boundary layers in a realistic manner. Furthermore, it will be shown that this approach has strong advantages over the more traditional countergradient approach, especially in the entrainment layer. As a result, this EDMF approach opens the way to parameterize the clear and cumulus-topped boundary layer in a simple and unified way.
Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.
Entrainment and detrainment processes have been recognised for a long time as key processes for cumulus convection and have recently witnessed a regrowth of interest mainly due to the capability of large-eddy simulations (LES) to diagnose these processes in more detail. This article has a twofold purpose. Firstly, it provides a historical overview of the past research on these mixing processes, and secondly, it highlights more recent important developments. These include both fundamental process studies using LES aiming to improve our understanding of the mixing process, but also more practical studies targeted toward an improved parametrised representation of entrainment and detrainment in large-scale models. A highlight of the fundamental studies resolves a long-lasting controversy by showing that lateral entrainment is the dominant mixing mechanism in comparison with the cloud-top entrainment in shallow cumulus convection. The more practical studies provide a wide variety of new parametrisations with sometimes conflicting approaches to the way in which the effect of the free tropospheric humidity on the lateral mixing is taken into account. An important new insight that will be highlighted is that, despite the focus in the literature on entrainment, it appears that it is rather the detrainment process that determines the vertical structure of the convection in general and the mass flux especially. Finally, in order to speed up progress and stimulate convergence in future parametrisations, stronger and more systematic use of LES is advocated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.