Background-We hypothesized that molecular imaging of endothelial cell adhesion molecule expression could noninvasively evaluate prelesion atherogenic phenotype. Methods and Results-Mice deficient for the LDL-receptor and the Apobec-1 editing peptide (DKO mice) were studied as an age-dependent model of atherosclerosis. At 10, 20, and 40 weeks of age, ultrasound molecular imaging of the proximal thoracic aorta was performed with contrast agents targeted to P-selectin and VCAM-1. Atherosclerotic lesion severity and content were assessed by ultrahigh frequency ultrasound, histology, and immunohistochemistry. In wild-type mice at all ages, there was neither aortic thickening nor targeted tracer signal enhancement. In DKO mice, lesions progressed from sparse mild intimal thickening at 10 weeks to widespread severe lesions with luminal encroachment at 40 weeks. Molecular imaging for P-selectin and VCAM-1 demonstrated selective signal enhancement (PϽ0.01 versus nontargeted agent) at all ages for DKO mice. P-selectin and VCAM-1 signal in DKO mice were greater by 3-fold at 10 weeks, 4-to 6-fold at 20 weeks, and 9-to 10-fold at 40 weeks compared to wild-type mice. En face microscopy demonstrated preferential attachment of targeted microbubbles to regions of lesion formation.
Conclusions-Noninvasive
Background
Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators.
Methods and Results
Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb.
Conclusions
Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.