Rotator cuff tears (RCT) are one of the most common sources of shoulder pain. Many factors can be considered to choose the right surgical treatment procedure. Of the most important factors are the tear retraction and tear width, assessed manually on preoperative MRI.A novel approach to automatically quantify a rotator cuff tear, based on the segmentation of the tear from MRI images, was developed and validated. For segmentation, a neural network was trained and methods for the automatic calculation of the tear width and retraction from the segmented tear volume were developed.The accuracy of the automatic segmentation and the automated tear analysis were evaluated relative to manual consensus segmentations by two clinical experts. Variance in the manual segmentations was assessed in an interrater variability study of two clinical experts.The accuracy of the tear retraction calculation based on the developed automatic tear segmentation was 5.3 mm ± 5.0 mm in comparison to the interrater variability of tear retraction calculation based on manual segmentations of 3.6 mm ± 2.9 mm.These results show that an automatic quantification of a rotator cuff tear is possible. The large interrater variability of manual segmentation-based measurements highlights the difficulty of the tear segmentations task in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.