Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.
Wild congeners of domesticated crops increasingly serve as sources of genes for improving crop cultivars. Although wild congeners have been included in seed collections for ex situ storage, there has been little work to protect populations of these wild species in their natural habitats for in situ conservation. We assessed the distribution of chile plants ( Capsicum annuum L. var. aviculare [Dierbach] D'Arcy and Eshbaugh) relative to the dominant woody vegetation of one subpopulation in a single drainage in southern Arizona, U.S.A. Wild chiles were not found in direct sun, and the distribution of chiles under different nurse plants could be a function of random chance, microenvironmental differences under different nurse-plant species, or nonrandom dispersal by chile consumers. To examine chile distribution, we measured the association of wild chiles with nurse-plant species and compared these associations with the available cover provided by each nurse plant. We also measured the buffering capacity of each nurse-plant species, conducted mammalian and avian food-preference experiments to determine the taxa dispersing chiles, and conducted time-budget studies of potential chile dispersal agents. Wild chiles were not randomly distributed: over 75% were under the canopies of fleshy-fruited shrubs that collectively made up less than 25% of the cover. We found limited evidence that differences in buffering capacity affected chile distribution. Food-preference experiments suggested that birds are the only effective dispersal agents, and the time budgets of three common bird species were strongly correlated with chile plant distribution. These results lend support for directed dispersal by avian consumers. The distribution of chiles appears to be a function of interactions between consumers, nurse plants, and the secondary chemicals in the chiles themselves. Only through studies of in situ populations can we understand the interactions that sustain both wild-crop relatives and the genetic variability essential to future crop management. Conservación In Situ de Chiles Silvestres y Sus Asociados BióticosResumen: Los parientes silvestres de cultivos domesticados sirven más y más como fuente de genes para el fitomejoramiento de cultivos. A pesar de que los parientes silvestres han sido incluidos en la recolección de semillas para almacenamiento ex situ, es poco el trabajo que se ha hecho en la protección de estas especies silvestres en su hábitat natural para su conservación in situ. Ilustramos lo importante que es el mantenimiento de las interacciones de la comunidad para la conservación efectiva de chiles silvestres o chiltepines ( Capsicum annuum L. var. aviculare [Dierbach] D'Arcy and Eshbaugh) in situ en el sur de Arizona, E.U.A. No se encuentran chiltepines bajo sol directo, pero la distribución de chiltepines bajo diferentes plantas nodrizas podría ser una función de suerte, diferencias microambientales debajo de distintas especies nodrizas, o dispersión no casual por consumidores de chiles. Para tratar con estas ...
This poster is dedicated to the memory of Alfredo Riesco, valued collaborator and friend, who died on 23 August, 2005 in an aeroplane crash near Pucallpa, Peru
Transformations that farmers bring to their traditional farming systems and their impacts on the conservation and evolution of maize varieties over a 12-year period are investigated using a longitudinal analysis. Despite the increased introduction and supply of improved maize variety seeds in the Yucatan Peninsula, Mexico, over the last 12 years farmers continue to maintain a substantial amount of traditional maize variety diversity. Even with the increased availability of hybrid seeds, farmers in the community of Yaxcaba on average plant more than three quarters of their milpa fields to traditional maize varieties, with the latter one fourth predominately planted to a locally improved variety Nal Xoy, a farm cross of a traditional variety and an improved variety. We observed a significant reduction in yellow -x-Nuuk nal, a long-cycle traditional landrace, paralleled by an increase in short-and intermediate-cycle locally adapted improved maize varieties. We found great differences in the distribution of maize varieties by soil type, with modern varieties being targeted for the rarer, deeper and fine-grained soils, while traditional varieties predominate on the more prevalent stony and thin soils. Our results provide a picture in which most traditional maize varieties in Yaxcaba continue to be maintained by farmers, coexisting with locally adapted improved varieties on the same landscape, and allowing the continued evolution of maize populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.