Background Opioid misuse and deaths are increasing in the United States. In 2017, Ohio had the second highest overdose rates in the US, with the city of Cincinnati experiencing a 50% rise in opioid overdoses since 2015. Understanding the temporal and geographic variation in overdose emergencies may help guide public policy responses to the opioid epidemic.
BackgroundWe have previously conducted computer-based tournaments to compare the yield of alternative approaches to deploying mobile HIV testing services in settings where the prevalence of undetected infection may be characterized by ‘hotspots’. We report here on three refinements to our prior assessments and their implications for decision-making. Specifically, (1) enlarging the number of geographic zones; (2) including spatial correlation in the prevalence of undetected infection; and (3) evaluating a prospective search algorithm that accounts for such correlation.MethodsBuilding on our prior work, we used a simulation model to create a hypothetical city consisting of up to 100 contiguous geographic zones. Each zone was randomly assigned a prevalence of undetected HIV infection. We employed a user-defined weighting scheme to correlate infection levels between adjacent zones. Over 180 days, search algorithms selected a zone in which to conduct a fixed number of HIV tests. Algorithms were permitted to observe the results of their own prior testing activities and to use that information in choosing where to test in subsequent rounds. The algorithms were (1) Thompson sampling (TS), an adaptive Bayesian search strategy; (2) Besag York Mollié (BYM), a Bayesian hierarchical model; and (3) Clairvoyance, a benchmarking strategy with access to perfect information.ResultsOver 250 tournament runs, BYM detected 65.3% (compared to 55.1% for TS) of the cases identified by Clairvoyance. BYM outperformed TS in all sensitivity analyses, except when there was a small number of zones (i.e., 16 zones in a 4 × 4 grid), wherein there was no significant difference in the yield of the two strategies. Though settings of no, low, medium, and high spatial correlation in the data were examined, differences in these levels did not have a significant effect on the relative performance of BYM versus TS.ConclusionsBYM narrowly outperformed TS in our simulation, suggesting that small improvements in yield can be achieved by accounting for spatial correlation. However, the comparative simplicity with which TS can be implemented makes a field evaluation critical to understanding the practical value of either of these algorithms as an alternative to existing approaches for deploying HIV testing resources.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1129-0) contains supplementary material, which is available to authorized users.
Even as vaccination for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expands in the United States, cases will linger among unvaccinated individuals for at least the next year, allowing the spread of the coronavirus to continue in communities across the country. Detecting these infections, particularly asymptomatic ones, is critical to stemming further transmission of the virus in the months ahead. This will require active surveillance efforts in which these undetected cases are proactively sought out rather than waiting for individuals to present to testing sites for diagnosis. However, finding these pockets of asymptomatic cases (i.e., hotspots) is akin to searching for needles in a haystack as choosing where and when to test within communities is hampered by a lack of epidemiological information to guide decision makers’ allocation of these resources. Making sequential decisions with partial information is a classic problem in decision science, the explore v. exploit dilemma. Using methods—bandit algorithms—similar to those used to search for other kinds of lost or hidden objects, from downed aircraft or underground oil deposits, we can address the explore v. exploit tradeoff facing active surveillance efforts and optimize the deployment of mobile testing resources to maximize the yield of new SARS-CoV-2 diagnoses. These bandit algorithms can be implemented easily as a guide to active case finding for SARS-CoV-2. A simple Thompson sampling algorithm and an extension of it to integrate spatial correlation in the data are now embedded in a fully functional prototype of a web app to allow policymakers to use either of these algorithms to target SARS-CoV-2 testing. In this instance, potential testing locations were identified by using mobility data from UberMedia to target high-frequency venues in Columbus, Ohio, as part of a planned feasibility study of the algorithms in the field. However, it is easily adaptable to other jurisdictions, requiring only a set of candidate test locations with point-to-point distances between all locations, whether or not mobility data are integrated into decision making in choosing places to test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.