Widespread production of biomass-derived fuels and chemicals will require cost-effective processes for breaking down cellulose and hemicellulose into their constituent sugars. Here, we report laboratory-scale production of soluble carbohydrates from corn stover, hardwood, and softwood at high yields (70 to 90%) in a solvent mixture of biomass-derived γ-valerolactone (GVL), water, and dilute acid (0.05 weight percent H2SO4). GVL promotes thermocatalytic saccharification through complete solubilization of the biomass, including the lignin fraction. The carbohydrates can be recovered and concentrated (up to 127 grams per liter) by extraction from GVL into an aqueous phase by addition of NaCl or liquid CO2. This strategy is well suited for catalytic upgrading to furans or fermentative upgrading to ethanol at high titers and near theoretical yield. We estimate through preliminary techno-economic modeling that the overall process could be cost-competitive for ethanol production, with biomass pretreatment followed by enzymatic hydrolysis.
Metabolic engineering offers the opportunity to produce a wide range of commodity chemicals that are currently derived from petroleum or other non-renewable resources. Microbial synthesis of fatty alcohols is an attractive process because it can control the distribution of chain lengths and utilize low cost fermentation substrates. Specifically, primary alcohols with chain lengths of 12 to 14 carbons have many uses in the production of detergents, surfactants, and personal care products. The current challenge is to produce these compounds at titers and yields that would make them economically competitive. Here, we demonstrate a metabolic engineering strategy for producing fatty alcohols from glucose. To produce a high level of 1-dodecanol and 1-tetradecanol, an acyl-ACP thioesterase (BTE), an acyl-CoA ligase (FadD), and an acyl-CoA/aldehyde reductase (MAACR) were overexpressed in an engineered strain of Escherichia coli. Yields were improved by balancing expression levels of each gene, using a fed-batch cultivation strategy, and adding a solvent to the culture for extracting the product from cells. Using these strategies, a titer of over 1.6 g/L fatty alcohol with a yield of over 0.13 g fatty alcohol / g carbon source was achieved. These are the highest reported yield of fatty alcohols produced from glucose in E. coli.
Microbially synthesized fatty acids are an attractive platform for producing renewable alternatives to petrochemically derived transportation fuels and oleochemicals. Free fatty acids (FFA) are a direct precursor to many high-value compounds that can be made via biochemical and ex vivo catalytic pathways. To be competitive with current petrochemicals, flux through these pathways must be optimized to approach theoretical yields. Using a plasmid-free, FFA-producing strain of Escherichia coli, a set of chemostat experiments were conducted to gather data for FFA production under phosphate limitation. A prior study focused on carbon-limited conditions strongly implicated non-carbon limitations as a preferred media formulation for maximizing FFA yield. Here, additional data were collected to expand an established kinetic model of FFA production and identify targets for further metabolic engineering. The updated model was able to successfully predict the strain's behavior and FFA production in a batch culture. The highest yield observed under phosphate-limiting conditions (0.1 g FFA/g glucose) was obtained at a dilution rate of 0.1 h(-1), and the highest biomass-specific productivity (0.068 g FFA/gDCW/h) was observed at a dilution rate of 0.25 h(-1). Phosphate limitation increased yield (∼45 %) and biomass-specific productivity (∼300 %) relative to carbon-limited cultivations using the same strain. FFA production under phosphate limitation also led to a cellular maintenance energy ∼400 % higher (0.28 g/gDCW/h) than that seen under carbon limitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.