(Pb, La)(Zr, Ti)O3 (PLZT) with antiferroelectric properties can be applied as a capacitor whose capacitance increases in a high electric field. From this, we obtained a high sintering density at 950 °C by adding low-temperature sintering additives, 8.0 wt% of PbO and 2.5 wt% of ZnO, simultaneously to a (Pb0.88, La0.12)(Zr0.86, Ti0.14)O3 composition. The change in electrical characteristics was confirmed in terms of Sn4+ substitution, resulting in no change in the sintering density by Sn4+ substitution. However, as the amount of Sn4+ substitution increases, the dielectric constant gradually decreases from 1300 to 700, and the grain size decreases from about 4 to 1 µm in terms of microstructure. In the crystal structure analysis, the general formation of a single perovskite structure was confirmed. The results of the hysteresis curve measurement revealed that the breakdown electric field increases from 4 to 9 kV·mm−1 as the amount of Sn4+ substitution gradually increases. However, polarization decreases in the same way as the permittivity trend. The composition exhibits excellent electrical properties when the ratio of Sn4+ is 0.4: a high energy storage density of 3.5 J·cm−3, energy efficiency of 80%, and breakdown electric field of about 8.5 kV·mm−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.