Ru(iii)- and Rh(iii)-cyclam macrocyclic complexes as selective oxygen electroreduction catalysts: no ligand μ-bonds or complex heating treatments are needed.
The oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) have been studied on a wide range of elec-trocatalysts, including bimetallic materials which are based solely on platinum group metals and their alloys. This work reports the synthe-sis and characterization of a novel bimetallic electrocatalyst, IrxMny(CO)n(DMF)z, for the ORR and HOR in acid media. The material was synthesized by reacting Ir4(CO)12 and MnCl2·4H2O in DMF. It was characterized structurally by FT-IR and micro-Raman spectroscopy, X-ray diffraction, SEM and energy-dispersive X-ray spectroscopy; the electrochemical characterization was made by the rotating disk elec-trode technique, at room temperature. The electrocatalytic activity of the new material for the ORR and HOR does not show appreciable variations due to the presence of methanol or carbon monoxide, respectively, even at high concentrations of these contaminants (2 mol L-1 methanol and 0.5% CO). This tolerance is a very important property with respect to platinum-based catalysts, which are poisoned by low concentrations of such contaminants. The kinetic parameters of the novel catalyst, such as Tafel slope (b), exchange current density (jo) and charge transfer coefficient (α), are reported as well. The results show that the novel electrocatalyst is attractive for evaluation as cath-ode/anode in PEM fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.