From the pioneering work of Winter [Phys. Rev. 124, 452 (1961)], a magnetic domain wall of Bloch type is known to host a special wall-bound spin-wave mode, which corresponds to spinwaves being channeled along the magnetic texture. Using micromagnetic simulations, we investigate spin-waves travelling inside Bloch walls formed in thin magnetic media with perpendicular-to-plane magnetic anisotropy and we show that their propagation is actually strongly nonreciprocal, as a result of dynamic dipolar interactions. We investigate spin-wave non-reciprocity effects in single Bloch walls, which allows us to clearly pinpoint their origin, as well as in arrays of parallel walls in stripe domain configurations. For such arrays, a complex domain-wall-bound spin-wave band structure develops, some aspects of which can be understood qualitatively from the single-wall picture by considering that a wall array consists of a sequence of up/down and down/up walls with opposite non-reciprocities. Circumstances are identified in which the non-reciprocity is so extreme that spin-wave propagation inside individual walls becomes unidirectional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.