In this article, we study the classical solution of the mixed problem in a quarter of a plane for a one-dimensional wave equation. On the bottom of the boundary, the Cauchy conditions are specified, and the second of them has a discontinuity of the first kind at a point. The smooth boundary condition is set at the side boundary. The solution is built using the method of characteristics in an explicit analytical form. The uniqueness is proved, and the conditions under which a piecewise-smooth solution exists are established. The problem with conjugate conditions is considered
For a one-dimensional mildly quasilinear wave equation given in the upper half-plane, we consider the Cauchy problem. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of some integro-differential equation. The solvability of this equation, as well the smoothness of its solution, is studied. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established. When given data is not enough smooth a mild solution is constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.