The definite interest in implementing sustainable industrial technologies has impelled the use of biocatalysts (enzymes or cells), leading to high chemo-, regio- and stereoselectivities under mild conditions. As usual substrates are not soluble in water, the employ of organic solvents is mandatory. We will focus on different attempts to combine the valuable properties of green solvents with the advantages of using biocatalysts for developing cleaner synthetic processes.
The synthesis of some noncommercial racemic 1,2-diaryl-2-hydroxyethanones (benzoins) is described, optimizing the previously reported methodologies. In a further step, the kinetic resolution of these substrates is reported, obtaining conversions of around 50% and ee(p) higher than 99% in very short reaction times. As enzymatic catalyst, after screening of several enzymes, the lipase TL (from Pseudomonas stutzeri) was the most efficient, working in an organic solvent with a very low log P value, such as THF. Finally, the dynamic-kinetic resolution of different benzoins using a lipase-ruthenium-catalyzed transesterification in organic solvents is described for the first time, obtaining conversions up to 90% maintaining the excellent enantioselectivity in all cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.