Dentin bonding issues involving adhesive resins have attracted considerable research interest in recent years. An important advance due to the ongoing research is the concept of hybridization of the tissue with primer/adhesive systems. Hybridization involves permeation of primer monomer into the tissue substrate. Although the mechanism of adhesive permeation and interaction with tissue may be complex, significant advances have been made. In systems where etching precedes priming and bonding steps, the Hoy's solubility parameter compatibility of the primer formulation with that of demineralized dentin matrix may determine adhesive permeability. Monomer permeation brings the primer atoms in closer contact with the substrate atoms, leading to adhesive interactions through van der Waals, hydrogen bonding, and electrostatic interactions. In self-etch primer systems, stronger electrostatic interaction between primer monomers and hydroxyapatite has been used to explain the adhesion process. These interactions have been computer-modeled and analyzed. Such interactions and subsequent polymerization of the monomer promote improved bond strength and efficient margin sealing. Incomplete permeation of monomer into the full depth of demineralized region may, however, leave exposed collagen fibrils and cause nanoleakage of water into these regions through a 20-100 nm sized marginal gap, leading to subsequent hydrolytic degradation of these collagen fibrils and the hybrid layer. Microleakage is also a problem in some single step formulations. In this review, we analyze these current theoretical and mechanism-related issues of interest in adhesive resin bonding to dentin, and outline the continuing problems that need to be overcome in the future. '
Selected commercial and experimental composites and resin systems have been evaluated by thermal analysis techniques of Differential Scanning Calorimetry, Thermogravimetric Analysis and Thermomechanical Analysis. Important thermal data such as heat of cure, coefficient of thermal expansion, dimensional changes over selected temperature ranges, filler weight percent, onset temperature of decomposition, etc. have been determined. Heat of cure, thermal expansion coefficient and dimensional changes appear to follow an inverse linear regression fit with filler fraction in the composite. Thermal expansion changes and exothermic reactions with temperature indicate secondary cure during postcure heating. The thermally-induced decomposition occurs in multiple stages indicating presence of different structural species in the resin matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.