Multiscale entropy (MSE) was proposed to characterize complexity as a function of the time-scale factor tau. Despite its broad use, this technique suffers from two limitations: 1) the artificial MSE reduction due to the coarse graining procedure and 2) the introduction of spurious MSE oscillations due to the suboptimal procedure for the elimination of the fast temporal scales. We propose a refined MSE (RMSE), and we apply it to simulations and to 24-h Holter recordings of heart rate variability (HRV) obtained from healthy and aortic stenosis (AS) groups. The study showed that the refinement relevant to the elimination of the fast temporal scales was more helpful at short scales (spanning the range of short-term HRV oscillations), while that relevant to the procedure of coarse graining was more useful at large scales. In healthy subjects, during daytime, RMSE was smaller at short scales (i.e., tau = 1-2) and larger at longer scales (i.e., tau = 4-20) than during nighttime. In AS population, RMSE was smaller during daytime both at short and long time scales (i.e., tau = 1 -11) than during nighttime. RMSE was larger in healthy group than in AS population during both daytime (i.e., tau = 2 -9) and nighttime (i.e., tau = 2). RMSE overcomes two limitations of MSE and confirms the complementary information that can be derived by observing complexity as a function of the temporal scale.
The qCON was able to reliably detect LOC during general anaesthesia with propofol and remifentanil. The qNOX showed significant overlap between movers and non-movers, but it was able to predict whether or not the patient would move as a response to noxious stimulation, although the anaesthetic concentrations were similar.
A substantial burden of pneumococcal disease in the region is potentially preventable with pneumococcal conjugate vaccines and should be considered in regional vaccine decision making. Results are limited by the very few studies, conducted in selected settings, included in this review.
The study assesses complexity of the cardiac control directed to the sinus node and to ventricles in long QT syndrome type 1 (LQT1) patients with KCNQ1-A341V mutation. Complexity was assessed via refined multiscale entropy (RMSE) computed over the beat-to-beat variability series of heart period (HP) and QT interval. HP and QT interval were approximated respectively as the temporal distance between two consecutive R-wave peaks and between the R-wave apex and T-wave end. Both measures were automatically taken from 24-hour electrocardiographic Holter traces recorded during daily activities in non mutation carriers (NMCs, n = 14) and mutation carriers (MCs, n = 34) belonging to a South African LQT1 founder population. The MC group was divided into asymptomatic (ASYMP, n = 11) and symptomatic (SYMP, n = 23) patients according to the symptom severity. Analyses were carried out during daytime (DAY, from 2PM to 6PM) and nighttime (NIGHT, from 12PM to 4AM) off and on beta-adrenergic blockade (BBoff and BBon). We found that the complexity of the HP variability at short time scale was under vagal control, being significantly increased during NIGHT and BBon both in ASYMP and SYMP groups, while the complexity of both HP and QT variability at long time scales was under sympathetic control, being smaller during NIGHT and BBon in SYMP subjects. Complexity indexes at long time scales in ASYMP individuals were smaller than those in SYMP ones regardless of therapy (i.e. BBoff or BBon), thus suggesting that a reduced complexity of the sympathetic regulation is protective in ASYMP individuals. RMSE analysis of HP and QT interval variability derived from routine 24-hour electrocardiographic Holter recordings might provide additional insights into the physiology of the cardiac control and might be fruitfully exploited to improve risk stratification in LQT1 population.
The analysis of heart rate variability (HRV) by nonlinear methods has been gaining increasing interest due to their ability to quantify the complexity of cardiovascular regulation. In this study, multiscale entropy (MSE) and refined MSE (RMSE) were applied to track the complexity of HRV as a function of time scale in three pathological conscious animal models: rats with heart failure (HF), spontaneously hypertensive rats (SHR), and rats with sinoaortic denervation (SAD). Results showed that HF did not change HRV complexity, although there was a tendency to decrease the entropy in HF animals. On the other hand, SHR group was characterized by reduced complexity at long time scales, whereas SAD animals exhibited a smaller short- and long-term irregularity. We propose that short time scales (1 to 4), accounting for fast oscillations, are more related to vagal and respiratory control, whereas long time scales (5 to 20), accounting for slow oscillations, are more related to sympathetic control. The increased sympathetic modulation is probably the main reason for the lower entropy observed at high scales for both SHR and SAD groups, acting as a negative factor for the cardiovascular complexity. This study highlights the contribution of the multiscale complexity analysis of HRV for understanding the physiological mechanisms involved in cardiovascular regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.