In this work, we describe our recent efforts aimed at determining the mechanism of signal change for a diffraction-based sensor (DBS) system. The DBS detects analyte-binding events by monitoring the change in diffraction efficiency that takes place when analyte molecules adsorbs to target molecules that have been patterned onto a surface. The exact parameters that affect the intensity of the diffraction intensity are not immediately clear. In this work, it is hypothesized that the intensity of the diffraction signal depends both on the thickness of the diffraction grating and the refractive index of the analyte molecule. This hypothesis has been tested by preparing diffraction grating targets of well-defined thickness from polyelectrolyte multilayers. The index of refraction of the layers was also adjusted by incorporating charged Au nanoparticles into the diffraction grating structure. Results of these experiments are discussed in terms of simple models based on volume-phase holography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.