Objectives-Prediction of motor recovery in the arm in patients with stroke is generally based on clinical examination. However, neurophysiological measures may also have a predictive value. The aims of this study were to assess the role of somatosensory (SSEPs) and motor (MEPs) evoked potentials in the prediction of arm motor recovery and to determine whether these measures added further predictive information to that gained from clinical examination. Methods-Sixty four patients who had had a stroke and presented with obvious motor deficit of the arm were examined in terms of three clinical variables (motor performance, muscle tone, and overall disability) and for SSEPs and MEPs. Clinical and neurophysiological examinations were done at entry to the study (2 to 5 weeks poststroke), and at about 2 months after stroke. Further clinical follow up was conducted at 6 and 12 months after stroke. Results-Neurophysiological measures made in the acute phase were of little use alone in predicting motor recovery of the arm at 2, 6, and 12 months after stroke. At 2 months, the absence of SSEPs and MEPs indicated a very poor outcome. Conversely, if the responses were preserved, a great variation in motor outcome was found. Multiple regression analysis showed that the addition of SSEPs and MEPs to the clinical examination increased the possibility of predicting arm recovery in the long term. In the acute phase, the combination of the motor score and SSEPs were best able to predict outcome. The long term outcome based on variables taken at 2 months, was best predicted through incorporating the three clinical measures and MEPs. Conclusions-Neurophysiological measures alone are of limited value in predicting long term outcome. However, predictive accuracy is substantially improved through the combined use of both of these measures and clinical variables. (J Neurol Neurosurg Psychiatry 2000;68:323-331)
The innervation of skin and oral mucosa plays a major physiological role in exteroception. It also has a clinical interest as illustrated by sensory changes after neurosurgical procedures. These sensory changes often rely only on the patients' subjective reports, although objective assessments are possible. This review compares the neurophysiological features of the trigeminal sensory pathways with those of cutaneous sensory innervation. In this review, three receptor groups will be discussed: mechanoreceptors, thermoreceptors and nociceptors. Differences between receptors in the glabrous skin, the hairy skin and the oral mucosa will be highlighted. Sensory testing devices have been developed to quantify psychophysiological parameters such as the threshold level for receptor activation upon mechanical stimulation, but such devices have been merely developed to determine the threshold of skin receptors (tactile, thermal). Later on, some have been adapted to suit the particularities of the oral environment. This review attempts to compare the available literature on test devices for oral versus cutaneous tactile function. It summarizes what is common or rather particular to the devices used to study either cutaneous or oral receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.