Aim This systematic review and meta-analysis aims to characterize the nutritional status of geriatric rehabilitation patients and its association with functional parameters. Findings Malnutrition is prevalent in a relevant percentage of geriatric rehabilitation patients, whereas body mass index (BMI) is in the normal to overweight range. Furthermore, data suggest that protein and energy intake is reduced and vitamin D deficiency is prevalent in this population. Decreased physical function is associated with malnutrition according to Mini-Nutritional Assessment (MNA) and MNA short form, whereas BMI did not show any clear association. Message Nutritional status is reduced in a relevant percentage of geriatric rehabilitation patients and associated with decreased physical function which emphasizes the need for screening and targeted interventions.
Spatial navigation forms one of the core components of an animal’s behavioural repertoire. Good navigational skills boost survival by allowing one to avoid predators, to search successfully for food in an unpredictable world, and to be able to find a mating partner. As a consequence, the brain has dedicated many of its resources to the processing of spatial information. Decades of seminal work has revealed how the brain is able to form detailed representations of one’s current position, and use an internal cognitive map of the environment to traverse the local space. However, what is much less understood is how neural computations of position depend on distance information of salient external locations such as landmarks, and how these distal places are encoded in the brain. The work in this thesis explores the role of one brain region in particular, the retrosplenial cortex (RSC), as a key area to implement distance computations in relation to distal landmarks. Previous research has shown that damage to the RSC results in losses of spatial memory and navigation ability, but its exact role in spatial cognition remains unclear. Initial electrophysiological recordings of single cells in the RSC during free exploration behaviour of the animal resulted in the discovery of a new population of neurons that robustly encode distance information towards nearby walls throughout the environment. Activity of these border cells was characterized by high firing rates near all boundaries of the arena that were available to the animal, and sensory manipulation experiments revealed that this activity persisted in the absence of direct visual or somatosensory detection of the wall. It quickly became apparent that border cell activity was not only modulated by the distance to walls, but was contingent on the direction the animal was facing relative to the boundary. Approximately 40% of neurons displayed significant selectivity to the direction of walls, mostly in the hemifield contra-lateral to the recorded hemisphere, such that a neuron in left RSC is active whenever a wall occupies proximal space on the right side of the animal. Using a cue-rotation paradigm, experiments initially showed that this egocentric direction information was invariant to the physical rotation of the arena. Yet this rotation elicited a corresponding shift in the preferred direction of local head-direction cells, as well as a rotation in the firing fields of spatially-tuned cells in RSC. As a consequence, position and direction encoding in RSC must be bound together, rotating in unison during the environmental manipulations, as information about allocentric boundary locations is integrated with head-direction signals to form egocentric border representations. It is known that the RSC forms many anatomical connections with other parts of the brain that encode spatial information, like the hippocampus and para-hippocampal areas. The next step was to establish the circuit mechanisms in place for RSC neurons to generate their activity in respect to the distance and direction of walls. A series of inactivation experiments revealed how RSC activity is inter-dependent with one of its communication partners, the medial entorhinal cortex (MEC). Together they form a wider functional network that encodes precise spatial information of borders, with information flowing from the MEC to RSC but not vice versa. While the conjunction between distance and heading direction relative to the outer walls was the main driver of neural activity in RSC, border cells displayed further behavioural correlates related to movement trajectories. Spiking activity in either hemisphere tended to precede turning behaviour on a short time-scale in a way that border cells in the right RSC anticipated right-way turns ~300 ms into the future. The interpretation of these results is that the RSC’s primary role in spatial cognition is not necessarily on the early sensory processing stage as suggested by previous studies. Instead, it is involved in computations related to the generation of motion plans, using spatial information that is processed in other brain areas to plan and execute future actions. One potential function of the RSC’s role in this process could be to act correctly in relation to the nearby perimeter, such that border cells in one hemisphere are involved in the encoding of walls in the contralateral hemifield, after which the animal makes an ipsilateral turn to avoid collision. Together this supports the idea that the MEC→RSC pathway links the encoding of space and position in the hippocampal system with the brain’s motor action systems, allowing animals to use walls as prominent landmarks to navigate the room.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.