Abstract. Cochin backwaters, a micro tidal estuary, undergo a characteristic transformation from a riverdominated system during summer monsoon to a tide-dominant system during pre-monsoon season. The present study observes that as the river flow weakens after monsoon, the flushing of the estuary diminishes and the nitrogen and phosphorous loadings through anthropogenic activities (industries) and sediment re-suspension alter the nutrient stoichiometry substantially. The increased tidal activity during pre-monsoon changes the estuary into a vertically mixed, eutrophic and flow-restricted system supporting an enhanced organic production. This implies that monsoon-induced hydrology plays an important role in regulating the nutrients, secondary production and even the migrant fauna of the estuary. The system is delicately poised, as continuous release of pollutants including nutrients into this estuary would suppress fish and shell fish production, where only pollution tolerant species can exist.
Hydrographic characteristics of the southwest coast of India and its adjoining Cochin backwaters (CBW) were studied during the summer monsoon period. Anomalous formation of anoxia and denitrification were observed in the bottom layers of CBW, which have not been previously reported elsewhere in any tropical estuarine systems. The prevalent upwelling in the Arabian Sea (AS) brought cool, high saline, oxygen deficient and nutrient-rich waters towards the coastal zone and bottom layers of CBW during the high tide. High freshwater discharge in the surface layers brought high amount of nutrients and makes the CBW system highly productive. Intrusion of AS waters seems to be stronger towards the upstream end (~15 km), than had been previously reported, as a consequence of the lowering of river discharges and deepening of channels in the estuary. Time series measurements in the lower reaches of CBW indicated a low mixing zone with increased stratification, 3 h after the high tide (highest high tide) and high variation in vertical mixing during the spring and neap phases. The upwelled waters (O<sub>2</sub>≤40 μM) intruded into the estuary was found to lose more oxygen during the neap phase (suboxic O<sub>2</sub>≤4 μM) than spring phase (hypoxic O<sub>2</sub>≤10 μM). Increased stratification coupled with low ventilation and presence of high organic matter have resulted in an anoxic condition (O<sub>2</sub>=0), 2–6 km away from barmouth of the estuary and leads to the formation of hydrogen sulphide. The reduction of nitrate and formation of nitrite within the oxygen deficient waters indicated strong denitrification intensity in the estuary. The expansion of oxygen deficient zone, denitrification and formation of hydrogen sulphide may lead to a destruction of biodiversity and an increase of green house gas emissions from this region
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.