Safe and secure network operation with acceptable voltage level has become a challenging task for utilities requiring corrective measures to be implemented. Network upgrades using Flexible Alternating Current Transmission System devices are being considered to serve this purpose. To this end, static loading margin enhancement by optimal static synchronous compensator (STATCOM) allocation to enhance the power transfer capability with minimal voltage variation is presented. Maximum loadability is formulated as an optimization problem, subjected to voltage and small-signal stability constraints. Stability indices are presented and incorporated with the optimization problem to ensure secure operation under maximum loading. The scheme is executed with the IEEE system and an Indian utility network. Improved voltage regulation with different loading condition was achieved for both test networks, with the service rendered by the optimally placed STATCOM. Moreover, it facilitates an additional 50% capacity release in both test systems for hosting the active power and loads.
Distributed Generators are gaining widespread applications around the world to facilitate the need for expanding generation capacity to meet the increasing load demand. However the integration and high penetration of distributed generations into the power system poses many issues that need to be addressed carefully. The main limiting factors for synchronous operation of distributed generators are voltage and angle instability and grid control authorities are limiting the distributed generator penetration level for maintaining grid stability. This paper attempts to identify the maximum safe system loading, with the integration of distributed generators, by the optimization of grid parameters. In this paper, optimal placement & setting of distributed energy resources (DER) is formulated so as to maximize the system loadability using PSO. The impact of optimal integration using PSO algorithm has been analyzed by studying different system parameters like voltage profile, line flows and real power generation. The application of the scheme is illustrated on a standard IEEE 14-bus system and 220 kV Kerala Grid Practical test system using Newton Raphson power flow method and modal analysis. Results presents the maximum system loadability in percentage, optimal location and setting of distributed energy resources, maximum safe bus loading beyond which system becomes unstable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.