Context. The complexity of the common-envelope phase and of magnetic stellar wind braking currently limits our understanding of close binary evolution. Because of their intrinsically simple structure, observational population studies of white dwarf plus main sequence (WDMS) binaries can potentially test theoretical models and constrain their parameters. Aims. The Sloan Digital Sky Survey (SDSS) has provided a large and homogeneously selected sample of WDMS binaries, which we characterise in terms of orbital and stellar parameters. Methods. We have obtained radial velocity information for 385 WDMS binaries from follow-up spectroscopy and for an additional 861 systems from the SDSS subspectra. Radial velocity variations identify 191 of these WDMS binaries as post common-envelope binaries (PCEBs). Orbital periods of 58 PCEBs were subsequently measured, predominantly from time-resolved spectroscopy, bringing the total number of SDSS PCEBs with orbital parameters to 79. Observational biases inherent to this PCEB sample were evaluated through extensive Monte Carlo simulations. Results. We find that 21-24% of all SDSS WDMS binaries have undergone common-envelope evolution, which is in good agreement with published binary population models and high-resolution HST imaging of WDMS binaries unresolved from the ground. The bias-corrected orbital period distribution of PCEBs ranges from 1.9 h to 4.3 d and approximately follows a normal distribution in log(P orb ), peaking at ∼10.3 h. There is no observational evidence for a significant population of PCEBs with periods in the range of days to weeks. Conclusions. The large and homogeneous sample of SDSS WDMS binaries provides the means to test fundamental predictions of binary population models, hence to observationally constrain the evolution of all close compact binaries.
Context. The standard prescription of angular momentum loss in compact binaries assumes magnetic braking to be very efficient as long as the secondary star has a radiative core, but to be negligible if the secondary star is fully convective. This prescription has been developed to explain the orbital period gap observed in the orbital period distribution of cataclysmic variables but has so far not been independently tested. Because the evolutionary time-scale of post common envelope binaries (PCEBs) crucially depends on the rate of angular momentum loss, a fundamental prediction of the disrupted magnetic braking theory is that the relative number of PCEBs should dramatically decrease for companion-star masses exceeding the mass that corresponds to the fully-convective boundary. Aims. We present the results of a large survey of PCEBs among white dwarf/main sequence (WDMS) binaries that allows us to determine the fraction of PCEBs as a function of secondary star mass and therewith to ultimately test the disrupted magnetic braking hypothesis. Methods. We obtained multiple spectroscopic observations spread over at least two nights for 670 WDMS binaries. Systems showing at least 3σ radial velocity variations are considered to be strong PCEB candidates. Taking into account observational selection effects we compare our results with the predictions of binary population simulations. Results. Among the 670 WDMS binaries we find 205 strong PCEB candidates. The fraction of PCEBs among WDMS binaries peaks around M sec ∼ 0.25 M and steeply drops towards higher mass secondary stars in the range of M sec = 0.25−0.4 M . Conclusions. The decrease of the number of PCEBs at the fully convective boundary strongly suggests that the evolutionary time scales of PCEBs containing fully convective secondaries are significantly longer than those of PCEBs with secondaries containing a radiative core. This is consistent with significantly reduced magnetic wind braking of fully convective stars as predicted by the disrupted magnetic braking scenario.
Aims. We want to study the temporal and spectral behaviour of HU Aqr in the X-ray domain during different accretion states. Methods. We obtained spectra and light curves from four different XMM-Newton pointings covering intermediate and low states. The X-ray observations were accompanied with high time resolution photometry obtained with the Optima and ULTRACAM instruments. Results. On two occasions in May 2002 and 2003 HU Aqr was found in an intermediate state with the accretion rate reduced by a factor of 50 compared to earlier high state measurements. X-ray spectra in the intermediate state can be described by a model containing a blackbody component and hot thermal plasma. Contrary to the high state the ratio between soft and hard X-ray flux is nearly balanced. In agreement with previous measurements we observed a migration of the accretion spot and stream towards the line connecting both stars. The brightness of HU Aqr was further reduced by a factor of 80 during two low states in October 2003 and May 2005, where it was detected at a luminosity of only L X = 4.7 × 10 28 erg s −1 . This luminosity would fit well with an active coronal emitter, but the relatively high plasma temperatures of 3.5 and 2.0 keV are more compatible with residual accretion. We updated the eclipse ephemeris of HU Aqr based on the eclipse egress of the accretion spot measured in various wavelength bands. The (O−C)-diagram of the observed accretion spot eclipse timings reveals complex deviations from a linear trend, which can be explained by a constant or cyclic period change or a combination thereof. The quadratic term implies a period decrease at a rate oḟ P orb = −7.. − 11 × 10 −12 s s −1 . In case the observed period change reflects a true angular momentum loss, this would be a factor of 30 larger than given by gravitational radiation.
From optical photometry we show that SDSS J121258.25-012310.1 is a new eclipsing, post common-envelope binary with an orbital period of 8.06 h and an eclipse length of 23 min. We observed the object over 11 nights in different bands and determined the ephemeris of the eclipse to HJD mid = 2 454 104.7086(2) + 0.3358706(5) × E, where numbers in parenthesis indicate the uncertainties in the last digit. The depth of the eclipse is 2.85 ± 0.17 mag in the V band, 1.82 ± 0.08 mag in the R band and 0.52 ± 0.02 mag in the I band. From spectroscopic observations we measured the semi-amplitude of the radial velocity K 2 = 181± 3 km s −1 for the secondary star. The stellar and binary parameters of the system were constrained from a) fitting the SDSS composite spectrum of the binary, b) using a K-band luminosty-mass relation for the secondary star, and c) from detailed analyses of the eclipse light curve. The white dwarf has an effective temperature of 17 700 ± 300 K, and its surface gravity is log g = 7.53 ± 0.2. We estimate that the spectral type of the red dwarf is M4 ± 1 and the distance to the system is 230 ± 20 parsec. The mass of the secondary star is estimated to be in the range M sec = 0.26−0.29 M , while the mass of the white dwarf is most likely M wd = 0.46−0.48 M . From an empirical mass-radius relation we estimate the radius of the red dwarf to be in the range 0.28−0.31 R , whereas we get R wd = 0.016−0.018 R from a theoretical mass-radius realation. Finally we discuss the spectral energy distribution and the likely evolutionary state of SDSS1212-0123.
Archival X-ray observations of EF Eridani obtained in a low state revealed distinct X-ray detections at a luminosity L X 2 × 10 29 erg s −1 , three orders of magnitude below its high state value. The plasma temperature was found to be as low as kT < ≈ 2 keV, a factor 10 below the high state. The X-ray/UV/IR spectral energy distribution suggests faint residual accretion rather than coronal emission as being responsible for the low-state X-ray emission. EF Eri thus showed a clear transition from being shock-dominated in the high state to be cyclotron-dominated in the low state. From the optical/UV spectral energy distribution we re-determine the photospheric temperature of the white dwarf to ∼10 000 K. Contrary to earlier claims, WD model atmospheres produce sufficient UV flux to reproduce the published GALEX flux and orbital modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.