Increased media coverage of plastic pollution in the environment and import bans on plastic waste in several countries have resulted in plastic waste becoming one of the most discussed waste streams in recent years. In the European Union (EU), only about one-third of the post-consumer plastic waste is recycled; the rest goes to energy recovery and landfilling in equal parts. In connection to the necessary increase in efforts to achieve the ambitious EU recycling targets, chemical recycling is currently receiving more and more attention. The assumption is that chemical recycling processes could open up new waste streams for recycling and generate valuable raw materials for the chemical industry. Although there exists no legal definition for chemical recycling, there is more or less agreement that it covers the conversion of plastic polymers into their monomers or chemical building blocks. Techniques such as gasification, pyrolysis and liquefaction as well as solvolysis can be used for chemical recycling. So far, only few large-scale plants for chemical recycling exist worldwide. This article presents the different processes by means of examples from (formerly) running installations and their suitability for plastics recycling is assessed. However, to date, only few chemical recycling plants are in continuous operation, and further scientific evidence for the ecological and economic benefits is still necessary for final evaluation.
Highlights• We introduce a new technique that allows measuring water repellency of individual particles • Two variants of the method each provide relatively simple and quick wettability assessments • It showed naturally wettable bulk soils contained water repellent particles and vice versa
Chemical recycling offers the opportunity to foster the transition towards a circular economy for plastics as a complementary strategy for mechanical recycling. For the implementation of chemical recycling technologies, there are still significant challenges ahead that -besides the definition of binding legal frameworks -need for intensified research: knowledgebased methods for both the identification of suitable process technologies considering decentralized waste conditions and the design of conversion steps and downstream processing are strongly needed for process development and process evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.