Magnesium-yttrium alloys show significantly improved room temperature ductility when compared with pure Mg. We study this interesting phenomenon theoretically at the atomic scale employing quantum-mechanical (so-called ab initio) and atomistic modeling methods. Specifically, we have calculated generalized stacking fault energies for five slip systems in both elemental magnesium (Mg) and Mg-Y alloys using (i) density functional theory and (ii) a set of embedded-atom-method (EAM) potentials. These calculations predict that the addition of yttrium results in a reduction in the unstable stacking fault energy of basal slip systems. Specifically in the case of an I 2 stacking fault, the predicted reduction of the stacking fault energy due to Y atoms was verified by experimental measurements. We find a similar reduction for the stable stacking fault energy of the {1122} 1123 non-basal slip system. On the other
Classical molecular dynamics simulations of bicrystalline systems are a commonly used tool for exploring the migration of grain boundaries. Most simulation work to date has focused on measuring the mobility of grain boundaries, assuming it to be an intrinsic property of a boundary of a given geometry.Here we present results from simulations of the migration of a typical high-angle grain boundary that show that the concept of intrinsic mobility fails for defect-free, flat boundaries of the type frequently simulated and that key assumptions often made in analysing the kinetics of migration do not hold. Our dynamical simulations of grain boundary migration show that the grain boundary velocity is not simply proportional to the driving force for grain boundary motion, as commonly assumed, and shows a strong and complex dependence on the system size.By analysing the migration mechanism at the larger mesoscale we show that defect-free, flat boundaries must migrate via the homogeneous nucleation and growth of islands of transformed crystal volume on the grain boundary surface. We present a detailed analysis of the kinetics of this process, which only emerges in simulations of large grain boundary areas. An island-based mesoscale mechanism implies an energy barrier for migration that is inversely proportional to the driving force for migration -in the experimental (zero-force) limit such boundaries must be immobile. This calls into question the concept of an intrinsic mobility for defect-free, flat grain boundaries and suggests that mobility of real boundaries at low temperatures is rather a function of their morphology and defect content and at high temperatures is a result of thermal roughening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.