This study aimed to identify functional correlates of seedling leaf nutrient content among woody species and to characterise functional species groups with respect to leaf nutrient attributes. Seedlings of 81 woody species from the temperate zone of western Europe were grown in a standard laboratory environment with standard, near-optimal nutrient availability. Weight-based leaf N content (N) was positively correlated with mean relative growth rate (RGR), but the correlation with mean RGR was tighter when leaf N was expressed on a whole-plant weight basis: leaf nitrogen weight ratio (LNWR). Area-based leaf N content (N) was not associated with mean RGR, but was closely correlated with the quotient of saturated leaf weight and leaf area. Weight-based leaf K content (K) was a close correlate of the saturated/dry weight ratio of the foliage. Within the lower range, K corresponded with growth-related nutrient attributes, but higher values appeared to indicate succulence or remobilisable stored water. Functional groups of species and genera could be distinguished with respect to seedling leaf nutrient attributes. Deciduous woody climbers and scramblers had consistently higher leaf N, LNWR and (apparently) leaf K than other deciduous species or genera, and shrubs had higher values than trees. These differences seemed due partly to variation in specific leaf area. Evergreens had consistently higher leaf N than deciduous plants, but there were no significant differences in weight-based leaf nutrient attributes between these two groups, possibly because of `luxury nutrient consumption' by the slow-growing evergreens. Another functional group was that of the nitrogen-fixing species, which had consistently high innate leaf N compared to non-N-fixers. The ecological significance of the leaf nutrient attributes in this study is discussed by comparing the seedling data with those from field-collected material, and by brief reference to the natural habitats of the species.
A hypothesis that a dense stand should develop a less uniform distribution of leaf nitrogen through the canopy than an open stand to increase total canopy photosynthesis was tested with experimentally established stands of Lysimachia vulgaris L. The effect of stand density on spatial variation of photon flux density, leaf nitrogen and specific leaf weight within the canopy was examined. Stand density had little effect on the value of the light extinction coefficient, but strongly affected the distribution of leaf nitrogen per unit area within a canopy. The open stand had more uniform distribution of leaf nitrogen than the dense stand. However, different light climates between stands explained only part of the variation of leaf nitrogen in the canopy. The specific leaf weight in the canopy increased with increasing relative photon flux density and with decreasing nitrogen concentration.
We studied water trnaslocation between interconnected mother and daughter ramets in two rhizomatous Carex species, using a newly developed quantitative method based on deuterium tracing. Under homogeneous conditions, in which both ramets were subjected either to wet or dry soil, little water was exchanged between the ramets. When the ramet pair was exposed to a heterogeneous water supply, water translocation became unidirectional and strongly increased to a level at which 30-60% of the water acquired by the wet ramet was exported towards the dry ramet. The quantity of water translocated was unrelated to the difference in water potential between the ramets, but highly correlated to the difference in leaf area. In both species, the transpiration of the entire plant was similar under heterogeneous and homogeneous wet conditions. This was a direct result of an increase in water uptake by the wet ramet in response to the dry conditions experienced by the interconnected ramet. In C. hirta, the costs and benefits of integration in terms of ramet biomass paralleled the responses of water consumption. This species achieved a similar whole-plant biomass in heterogeneous and homogeneous wet treatments, and water translocation was equally effective in the acropetal and basipetal directions. In C. flacca, responses of biomass and water consumption did not match and, under some conditions, water translocation imposed costs rather than benefits to the plants of this species. It is concluded that enhanced resource acquisition by donor ramets may be of critical importance for the net benefits of physiological integration in clonal plants.
In order to examine whether the translocation of water and nitrogen in clonal plants is interdependent, interramet translocation of these two resources was investigated in the greenhouse. Two-ramet systems of Carex flacca were imposed to different spatial patterns of water and nitrogen supply. The experimental design allowed to examine the effects of water heterogeneity on nitrogen sharing, and, vice versa, the effects of nitrogen heterogeneity on water sharing. Interramet translocation of both water and nitrogen was quantified by stable isotope labelling. If one of the ramets was deprived of water, nitrogen or both resources (parallel resource heterogeneity), resource translocation towards this ramet was markedly enhanced compared to a control treatment in which both ramets received ample water and ample nitrogen. Under these conditions, the amount of water or nitrogen translocated was not significantly affected by the pattern of heterogeneity of the other resource imposed on the two-ramet system. If one of the interconnected ramets was rooted in dry but nitrogen-rich soil and the other ramet was placed in nitrogen-deficient but well-watered soil (reciprocal resource heterogeneity), a significant amount of water was translocated towards the ramet in dry soil, while the low-N ramet hardly received any nitrogen. These results show that little nitrogen is translocated between ramets in a direction opposite to the transpiration stream within the rhizome. However, nitrogen may be translocated independently from water if both are transported in a similar direction within the clonal system. The effects of translocation on ramet performance (in terms of transpiration, nitrogen accumulation, and biomass) were assessed by comparing interconnected ramets with isolated (severed) ramets that were treated identically. Integration enhanced the performance of ramets deficient of one or both of the resources. In case of water translocation, the transpiration and growth of the water exporting (donor) ramets was similar to the transpiration and growth of their isolated counterparts. When nitrogen was heterogeneously supplied, however, nitrogen accumulation and growth of the donor ramet was reduced to the same extent as the performance of the nitrogen-deficient ramet was increased. Water translocation thus enhanced the performance of the whole plant, while nitrogen only reduced the differences in ramet performance within the plant. In the case of the reciprocal heterogeneity treatment, the benefits of translocation were strongly unidirectional towards the ramet in dry soil. The data for this treatment suggested that total nitrogen accumulation was enhanced by the acquisition of nitrogen from the dry pot as a result of "hydraulic lift" and water exudation in the dry soil. We conclude that nitrogen translocation in clonal plants, and the associated benefits in terms of resource utilization and growth, may strongly depend on the pattern of interramet water transport. The implications are discussed for studies of physiological integrat...
Seasonal changes in leaf nitrogen distribution were examined in the canopy of a Carex acutiformis stand in a wet meadow area. Although there was a tendency for leaf nitrogen concentration to decrease with increasing leafage in any one layer of the canopy, nitrogen concentration increased significantly with plant height despite increasing age of leaf portions higher in the canopy. This suggests a predominant effect of the light climate on the nitrogen distribution within the canopy. During the growing period, standing crop dry mass increased significantly, while the increase in the standing crop of nitrogen was marginal. The amount of nitrogen decreased in the lower layers and increased in the upper layers, and a strongly decreasing gradient of nitrogen concentration developed from the top to the bottom of the canopy. It is suggested that this gradient resulted mainly from leaf tips with high nitrogen concentrations being lifted to higher positions because of growth at the base, with some retranslocation of nitrogen downwards from senescing tips to active par!s. The distribution of nitrogen concentration became less uniform during the growing penod, thus supporting the prediction that nitrogen concentration should become less uniformly distributed with development of the canopy ..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.