Roselle (Hibiscus sabdariffa L.), an annual plant with acidic taste, has been used for making juice, jelly, and other baking additives in Taiwan. In September 2013, symptoms including phyllody and wrinkled leaves were observed on roselle plants in a field in Tantsu Township, Taichung County, Taiwan. Incidence of the infected plants was estimated to be greater than 80% within a single field. A phytoplasma was recently reported as the causal agent of roselle phyllody and reddening of leaves in India and classified as a group 16SrV-D strain (1). Samples including stems, flowers, and leaves were collected from four symptomatic and one asymptomatic roselle plants from the field. Transmission electron microscopy revealed clusters of phytoplasma cells ranging from 400 to 750 nm in diameter only in phloem sieve elements of petioles and stems of symptomatic plants. These cells were not observed in asymptomatic plants. Total DNA was extracted from plant tissues (100 mg each) including stems, petioles, and mid veins of leaves by a modified CTAB method (2). Analyses by a nested PCR assay using universal primer pairs P1/P7 followed by R16F2n/R16R2 were performed to detect putative phytoplasma (1). Each primer pair amplified a single PCR product 1.8 kb and 1.2 kb long, respectively, only from tissues of the four symptomatic plants. The nested PCR products (1.2 kb) amplified from three independent symptomatic plants were cloned separately and sequenced by automatic DNA sequencing method with ABI3730 DNA Analyzer (Applied Biosystems) at the Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (GenBank Accession Nos. KF923397, KF923398, and KF923399). BLAST analysis of the sequences revealed that they shared 99.8% sequence identity with those of 16SrI group phytoplasma strains, e.g., garlic yellows phytoplasma, torenia yellows phytoplasma, and periwinkle leaf yellowing phytoplasma (AB750363, FJ437568, and GU361754). Moreover, i PhyClassifier software (3) was used to perform sequence comparison and generate a virtual restriction fragment length polymorphism (RFLP) profile for the sequences derived from the symptomatic roselle samples. The 16S rDNA sequences shared 99.6% identity with those of the ‘Candidatus Phytoplasma asteris’ reference strain (M30790) and the RFLP patterns were identical to that of the 16SrI group. However, this strain may represent a new subgroup because the shared similarity coefficient was only 0.94, which is within the values set for a new subgroup (3). Taken together, these results indicate the phytoplasma infecting roselle in Taiwan is a ‘Ca. P. asteris’-related strain belonging to the 16SrI group. To our knowledge, this is the first report of a 16SrI group phytoplasma causing wrinkled leaves and phyllody on roselle in Taiwan. The occurrence of phytoplasma on roselle could have direct implication for the bakery and juice industries in Taiwan. References: (1) C. Biswas et al. Phytoparasitica 41:539, 2013. (2) I. Echevarría-Machado et al. Mol. Biotechnol. 31:129, 2005. (3) W. Wei et al. Int. J. Syst. Evol. Microbiol. 57:1855, 2007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.