A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement “H”-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n1/3 rational surfaces into the plasma (rather than ∼n1/2, expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle.
The non-relativistic theory of a plasma in an electric field E predicts that there will always be runaway electrons, although their number will be exponentially small for fields less than the Dreicer field ED. However, when E/ED ∼ kT/mec2, the ratio of the electron thermal energy to the rest mass energy, relativistic effects become important. After comparing earlier non-relativistic calculations we extend the approach of Kruskal and Bernstein to take account of relativistic effects and also to investigate the influence of impurities. It is found that below the critical electric field ER = ED (kT/mec2) absolutely no runaways are generated. In addition, the number of runaway electrons produced by electric fields in excess of ER is calculated and we find significant modifications to the non-relativistic estimates when (ED/E)2 (kT/mec2) > 1.
Tokamak discharges with improved energy confinement properties arising from internal transport barriers (ITBs) have certain attractive features, such as a large bootstrap current fraction, which suggest a potential route to the steady-state mode of operation desirable for fusion power plants. This paper first reviews the present state of theoretical and experimental knowledge regarding the formation and characteristics of ITBs in tokamaks. Specifically, the current status of theoretical modelling of ITBs is presented; then, an international ITB database based on experimental information extracted from some nine tokamaks is described and used to draw some general conclusions concerning the necessary conditions for ITBs to appear, comparing these with the theoretical models. The experimental situation regarding the steady-state, or at least quasi-steady-state, operation of tokamaks is reviewed and finally the issues and prospects for achieving such operational modes in ITER are discussed. More detailed information on the characteristics of ITBs in some 13 tokamaks (as well as helical devices) appears in the appendix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.