Streptococcus suis (S. suis) can be classified into 33 serotypes based on the structure of capsular polysaccharides. Recent research indicated that a new surface protein designated as Sao (surface antigen one) reacts with 30 serotypes of convalescent-phase sera during S. suis infections, which makes Sao a good potential antigen for developing S. suis vaccines. The objectives of this study were to produce recombinant Sao-L protein (rSao-L) from a strain of S. suis serotype 2 by a prokaryotic expression system in bioreactors and to use rSao-L as the antigen for a S. suis vaccine in mouse and swine models. The antibody titres in mice and pigs immunized with rSao-L were significantly (P < 0.05) increased. After challenge with live S. suis serotype 1 bacteria, the anatomical lesions in pigs immunized with rSao-L were reduced by 60%. These data indicated that immunization with rSao-L can confer cross-serotype protection against S. suis. Moreover, percentages of CD8(+) and CD4(+) /CD8(+) double-positive T cells in immunized pigs were significantly higher than those of the control group (P < 0.01). Using bioreactors to produce rSao-L as the antigen for S. suis vaccines may broaden protective efficacy and reduce production costs.
Aims:To evaluate the effect of a DNA priming and protein boosting immunization scheme in ducks. Methods and results: Pekin ducks were immunized with pTCY/VP2 DNA vaccine; on day 14 (D14) after primary immunization, the ducks were boosted with either the same vaccine (DNA + DNA) or the rVP2 vaccine (DNA + rVP2). CpG oligodeoxynucleotides containing three copies of GACGTT motifs were used as the adjuvant in the vaccines. Compared with unimmunized controls, both immunization schemes significantly increased the titre of antigen-specific antibodies, lymphocyte proliferation index, percentage of CD4 + and CD8 + cells in peripheral blood mononuclear cells (PBMCs) and mRNA expression of interferon (IFN)-a, IFN-c, interleukin (IL)-6 and IL-12 in antigen-stimulated PBMCs. Furthermore, compared with the DNA + DNA homologous scheme, the DNA + rVP2 heterologous scheme significantly increased lymphocyte proliferation, percentage of CD4 + and CD8 + cells in PBMCs and upregulation of mRNA expression of cytokines 2 weeks after the boost (D28). Conclusions: The DNA + rVP2 immunization scheme enhanced immune responses, mainly Th1 type, against parvovirus in ducks. Significance and Impact of the Study: The DNA priming and protein boosting heterologous immunization strategy can be applied to develop vaccines against viral infections in ducks. It can potentially be used in breeding ducks because of long-term immunity may confer protection for ducklings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.