Abstract. We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems.
Transcription factors of the RUNX family (RUNXs), which play pivotal roles in normal development and neoplasia, are regulated by various post-translational modifications. To understand the molecular mechanisms underlying the regulation of RUNXs, we performed a large-scale functional genetic screen of a fly mutant library. The screen identified dPias (the fly ortholog of mammalian PIASs), an E3 ligase for the SUMO (small ubiquitin-like modifier) modification, as a novel genetic modifier of lz (the fly ortholog of mammalian RUNX3). Molecular biological analysis revealed that lz/RUNXs are sumoylated by dPias/PIAS1 at an evolutionarily conserved lysine residue (K372 of lz, K144 of RUNX1, K181 of RUNX2 and K148 of RUNX3). PIAS1-mediated sumoylation inhibited RUNX3 transactivation activity, and this modification was promoted by the AKT1 kinase. Importantly, PIAS1 failed to sumoylate some RUNX1 mutants associated with breast cancer. In nude mice, tumorigenicity was promoted by RUNX3 bearing a mutation in the sumoylation site, but suppressed by wild-type RUNX3. Our results suggest that RUNXs are sumoylated by PIAS1, and that this modification could play a critical role in the regulation of the tumor-suppressive activity of these proteins.
Abstract. We present CCD photometric results of the eclipsing binary Y Cam, whose primary component has been known to be a δ Scuti type pulsator. Observations were performed for 16 nights, including two primary minima, from November 2000 to May 2001. After correction for light variations caused by the eclipsing phenomenon, we investigated its pulsating features in detail. We derived four pulsation frequencies of 15.0473 c/d, 18.2852 c/d, 14.8203 c/d and 17.7348 c/d using all data except for the primary eclipsing phase. The first frequency turned out to be constant over 40 years but the other frequencies have been changed or newly excited. It should be noted that V amplitude of the first frequency decreased to about a half in comparison with the previous results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.