The ALMA North American and European prototype antennas have been evaluated by a variety of measurement systems to quantify the major performance specifications. Nearfield holography was used to set the reflector surfaces to 17 µm RMS. Pointing and fast switching performance was determined with an optical telescope and by millimeter wavelength radiometry, yielding 2 ′′ absolute and 0.6 ′′ offset pointing accuracies. Path length stability was measured to be 20 µm over 10 minute time periods using optical measurement devices. Dynamical performance was studied with a set of accelerometers, providing data on wind induced tracking errors and structural deformation. Considering all measurements made during this evaluation, both prototype antennas meet the major ALMA antenna performance specifications.
We summarise the mathematical foundation of the holographic method of
measuring the reflector profile of an antenna or radio telescope. In
particular, we treat the case, where the signal source is located at a finite
distance from the antenna under test, necessitating the inclusion of the
so-called Fresnel field terms in the radiation integrals. We assume a ``full
phase'' system with reference receiver to provide the reference phase. We
describe in some detail the hardware and software implementation of the system
used for the holographic measurement of the 12m ALMA prototype submillimeter
antennas. We include a description of the practicalities of a measurement and
surface setting. The results for both the VertexRSI and AEC
(Alcatel-EIE-Consortium) prototype ALMA antennas are presented.Comment: 14 pages, 14 figures, to appear in IEEE Antennas and Propagation
Magazine, Vol. 49, No. 5, October 2007. Version 2 includes nice mug-shots of
the author
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.