The objectives of this study were 1) to investigate if there were differences in the relation between temperature and reproductive performance traits in 2 different sow lines, a Yorkshire line producing mainly in temperate climates and a Large White line producing mainly in warm climates, and 2) to determine the upper critical temperature (UCT) for the reproductive performance of these 2 lines. Sows are exposed to heat stress when temperature exceeds the UCT of the thermo-neutral zone. Data included 32,631 observations on reproductive performance from 11,935 sows on 20 farms in Spain, collected from 2003 to 2005. Sows belonged to 2 different purebred sow lines, named D (Yorkshire sow line, producing mainly in temperate climates) and I (Large White sow line, producing mainly in warm climates). Only first insemination records per parity were used and were combined with the maximum outside temperature at day of insemination. Upper critical temperatures were studied for 3 reproduction traits: farrowing rate (0 or 1), litter size (range from 1 to 25), and total number of piglets born per first insemination (combination of farrowing rate and litter size, range from 0 to 25). Data were corrected for fixed effects, which included parity, service sire, and an interaction between farm and year. Corrected data were used as observations in the models to study the effect of outside temperature on reproductive performance. Two models were compared for goodness of fit: a linear regression model and a plateau-linear model with the plateau representing the thermo-neutral zone and a linear decrease above that zone. Farrowing rate of I-line sows was not affected by temperature. For litter size and total number born per first insemination of I-line sows no UCT could be estimated. These traits were linearly affected by temperature. For all 3 reproduction traits of the D-line the best model was the plateau-linear model; the UCT for the D-line sows was estimated to be 19.2 degrees C for farrowing rate, 21.7 degrees C for litter size, and 19.6 degrees C for total number born per first insemination. The decrease in reproductive performance of I-line sows with increasing outside temperature was less than in D-line sows. From this study it can be concluded that there are differences in heat stress tolerance between sow lines as measured by the differences in reproductive performance. These differences are an indication of genetic differences in heat stress tolerance in sow lines.
BackgroundIn many countries, male piglets are castrated shortly after birth because a proportion of un-castrated male pigs produce meat with an unpleasant flavour and odour. Main compounds of boar taint are androstenone and skatole. The aim of this high-density genome-wide association study was to identify single nucleotide polymorphisms (SNPs) associated with androstenone levels in a commercial sire line of pigs. The identification of major genetic effects causing boar taint would accelerate the reduction of boar taint through breeding to finally eliminate the need for castration.ResultsThe Illumina Porcine 60K+SNP Beadchip was genotyped on 987 pigs divergent for androstenone concentration from a commercial Duroc-based sire line. The association analysis with 47,897 SNPs revealed that androstenone levels in fat tissue were significantly affected by 37 SNPs on pig chromosomes SSC1 and SSC6. Among them, the 5 most significant SNPs explained together 13.7% of the genetic variance in androstenone. On SSC6, a larger region of 10 Mb was shown to be associated with androstenone covering several candidate genes potentially involved in the synthesis and metabolism of androgens. Besides known candidate genes, such as cytochrome P450 A19 (CYP2A19), sulfotransferases SULT2A1, and SULT2B1, also new members of the cytochrome P450 CYP2 gene subfamilies and of the hydroxysteroid-dehydrogenases (HSD17B14) were found. In addition, the gene encoding the ß-chain of the luteinizing hormone (LHB) which induces steroid synthesis in the Leydig cells of the testis at onset of puberty maps to this area on SSC6. Interestingly, the gene encoding the α-chain of LH is also located in one of the highly significant areas on SSC1.ConclusionsThis study reveals several areas of the genome at high resolution responsible for variation of androstenone levels in intact boars. Major genetic factors on SSC1 and SSC6 showing moderate to large effects on androstenone concentration were identified in this commercial breeding line of pigs. Known and new candidate genes cluster especially on SSC6. For one of the most significant SNP variants, the difference in the proportion of animals surpassing the threshold of consumer acceptance between the two homozygous genotypes was as much as 15.6%.
Pig breeders in the past have adopted their breeding goals according to the needs of the producers, processors and consumers and have made remarkable genetic improvements in the traits of interest. However, it is becoming more and more challenging to meet the market needs and expectations of consumers and in general of the citizens. In view of the current and future trends, the breeding goals have to include several additional traits and new phenotypes. These phenotypes include (a) vitality from birth to slaughter, (b) uniformity at different levels of production, (c) robustness, (d) welfare and health and (e) phenotypes to reduce carbon footprint. Advancements in management, genomics, statistical models and other technologies provide opportunities for recording these phenotypes. These new developments also provide opportunities for making effective use of the new phenotypes for faster genetic improvement to meet the newly adapted breeding goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.