We write the Kerr-Schild tetrads in terms of the flat space-time tetrads and of a (1,1) tensor S λ µ . This tensor can be considered as a projection operator, since it transforms (i) flat space-time tetrads into non-flat tetrads, and vice-versa, and (ii) the Minkowski space-time metric tensor into a non-flat metric tensor, and vice-versa. The S λ µ tensor and its inverse are constructed in terms of the standard null vector field l µ that defines the Kerr-Schild form of the metric tensor in general relativity, and that yields black holes and non-linear gravitational waves as solutions of the vacuum Einstein's field equations. We show that the condition for the vanishing of the Ricci tensor obtained by Kerr and Schild, in empty space-time, is also a condition for the vanishing of the Nijenhuis tensor constructed out of S λ µ . Thus, a theory based on the Nijenhuis tensor yields an important class of solutions of the Einstein's field equations, namely, black holes and non-linear gravitational waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.