Ninety-four cows were randomly allocated to 1 of 5 stocking rates (2.2, 2.7, 3.1, 3.7, and 4.3 cows/ha) in a completely randomized design for 3 years. Herds were seasonal calving, with only minor differences in grazing management to optimize the profitability of each stocking rate (SR). Pasture production and quality data, milk and milk component data, and reproduction data were collected, averaged for SR treatment, and linear and quadratic contrasts on SR were evaluated. In addition, the Wilmink exponential model (y(t) = a + b x e((-0.05t) )+ c x t) was fitted to milk yield within lactation, and the parameters were averaged by SR treatment and analyzed as above. The median variation explained by the function for individual lactations was 84%. The amount of pasture grown tended to increase, and the quality of the pasture on offer increased linearly with increasing SR, reducing some of the negative impact of SR on the availability of pasture per cow. Milk production per cow declined linearly with increasing SR, although there was a tendency for most production variables to decline quadratically, with the negative effect of SR declining with increasing SR. The effect on milk production per cow was primarily because of a lower peak milk yield and a greater post-peak decline (less persistent milk profile), although a decline in lactation length with increasing SR was responsible for 24% of the effect of SR on milk yield. Milk production per hectare increased linearly with increasing SR, and there was only a small difference (approximately 3%/cow per ha) in the efficiency of converting feed dry matter into milk energy. Stocking rate did not affect reproductive success. The data are consistent with the need for a more robust measure of SR than cows per hectare because farms will differ in the genetic merit of their cows and in the potential to produce pasture. We introduce the concept of a comparative SR, whereby the carrying capacity of the farm is defined by the BW of the cows, the potential of the land to produce pasture, and the amount of supplement purchased (kg of BW/t of feed dry matter). The adoption of such a measure would facilitate the extrapolation and transfer of research findings among systems.
Nitrogen (N) inputs and outputs were measured over 3 years in a trial with four farmlets (each with 16 randomly-allocated 0n4 ha paddocks) on permanent white clover\ryegrass pastures which were grazed throughout the year by dairy cows near Hamilton, New Zealand. Three farmlets were stocked at 3n3 cows\ha and received nominal rates of N fertilizer (urea in 8-10 split applications) of 0, 200 or 400 kg N\ha per year. A fourth farmlet with 4n4 cows\ha received 400 kg N\ha per year and was supplemented with maize grain during the first two years.Nitrogen balances were calculated, with ΣN inputs $ ΣN outputs. Annual inputs from N # fixation were 99-231 kg N\ha in the 0 N farmlet, but declined to 15-44 kg N\ha in the 400 N farmlets. The main N outputs (in kg N\ha per year) were in milk (72-126), nitrate leaching (20-204), and transfer of N via cow excreta from pastures to lanes and milking shed (54-92). Gaseous losses by denitrification (3-34) and volatilization (15-78) were smaller than the other N outputs but increased significantly with N fertilizer application. In the maize-supplemented farmlet, N outputs in milk were 31 % higher than in the corresponding non-supplemented 400 N farmlet, whereas leaching losses averaged 17 % lower during the 2 years of supplementation.In the N-fertilized farmlets, estimated N balances were influenced by inclusion of the transitional N processes of immobilization of fertilizer N into the soil organic N pool (estimated using "&N at 42-94 kg N\ha per year) and the contribution from mineralization of residual clover-fixed N in soil not accounted for in the current estimates of N # fixation (estimated at up to 70 % of measured N # fixation or 46 kg N\ha per year). However, these processes were counteracting and together were calculated to have only a small net effect on total N balances.The output of N in products (milk, meat and feed) relative to the total N input averaged 26 % in the 400 N farmlets, and is compared to that measured for commercial intensively-managed dairy farms in England and the Netherlands (14-20 %). The 0 N farmlet, which was reliant on N # fixation as the sole N input, was relatively very N-efficient with the milk production being 83 % of that in the 400 N farmlet (at 3n3 cows\ha) and the N output in products relative to total N input averaging 52 %.
This experiment compared Holstein-Friesian (HF) cows of New Zealand (NZ) origin representative of genetics present in the 1970s (NZ70; n = 45) and 1990s (NZ90; n = 60), and a group of HF cows of North American origin with 1990s genetics (NA90; n = 60), which were managed in grazing systems with a range of feeding allowances (4.5 to 7.0 t/cow per yr) over 3 yr. The NZ70 cows had the lowest Breeding Worth genetic index and the lowest breeding values for yields of fat, protein, and milk volume; the NZ90 and NA90 cows were selected to have similar breeding values for milk traits and were representative of cows of high genetic merit in the 1990s. The NZ90 cows had a higher milk protein concentration (3.71%) than either the NA90 (3.43%) or the NZ70 cows (3.41%), and a higher milk fat concentration (4.86%) than the NA90 cows (4.26%) with a level similar to the NZ70 cows (4.65%). The NZ90 cows produced significantly greater yields of fat, protein, and lactose than the NA90 and NZ70 cows. The NZ70 cows had the lowest mean annual body weight (473 kg) but the highest body condition score (BCS; 5.06). Days in milk were the same for the 2 NZ strains (286 d in milk), both of which were greater than the NA90 cows (252 d in milk). There was no genotype x environment interaction for combined milk fat and protein yield (milksolids), with NZ90 producing 52 kg/cow more than the NA90 at all feeding levels. The NZ70 strain had the highest seasonal average BCS (5.06), followed by the NZ90 (4.51) and the NA90 (4.13) strains on a 1 to 10 scale. Body condition score increased with higher feeding levels in the 2 NZ strains, but not in the NA strain. The first-parity cows commenced luteal activity 11 d later than older cows (parities 2 and 3), and the NA90 cows commenced luteal activity 4 and 10 d earlier than the NZ70 and NZ90 cows. Earlier estrus activity did not result in a higher in-calf rate. The NZ70 and NZ90 cows had similar in-calf rates (pregnancy diagnosed to 6 wk; 69%), which were higher than those achieved by NA90 cows (54%). Results showed that the NA90 strain used in this experiment was not suitable for traditional NZ grazing systems. Grazing systems need to be modified if the NA90 strain is to be successfully farmed in NZ. The data reported here show that the NA90 cows require large amounts of feed, but this will not prevent them from having a lower BCS than the NZ strains. Combined with poor reproductive performance, this means that NA90 cows are less productive than NZ HF in pasture-based seasonal calving systems with low levels of supplementation.
Production from pasture-based dairy farms can be increased through using N fertilizer to increase pasture grown, increasing stocking rate, importing feeds from off farm (i.e., supplementary feeds, such as cereal silages, grains, or co-product feeds), or through a combination of these strategies. Increased production can improve profitability, provided the marginal cost of the additional milk produced is less than the milk price received. A multiyear production system experiment was established to investigate the biological and economic responses to intensification on pasture-based dairy farms; 7 experimental farmlets were established and managed independently for 3 yr. Paddocks and cows were randomly allocated to farmlet, such that 3 farmlets had stocking rates of 3.35 cows/ha (LSR) and 4 farmlets had stocking rates of 4.41 cows/ha (HSR). Of the LSR farmlets, 1 treatment received no N fertilizer, whereas the other 2 received either 200 or 400 kg of N/ha per year (200N and 400N, respectively). No feed was imported from off-farm for the LSR farmlets. Of the 4 HSR farmlets, 3 treatments received 200N and the fourth treatment received 400N; cows on 2 of the HSR-200N farmlet treatments also received 1.3 or 1.1 t of DM/cow per year of either cracked corn grain or corn silage, respectively. Data were analyzed for consistency of farmlet response over years using mixed models, with year and farmlet as fixed effects and the interaction of farmlet with year as a random effect. The biological data and financial data extracted from a national economic database were used to model the statement of financial performance for the farmlets and determine the economic implications of increasing milk production/cow and per ha (i.e., farm intensification). Applying 200N or 400N increased pasture grown per hectare and milk production per cow and per hectare, whereas increasing stocking rate did not affect pasture grown or milk production per hectare, but reduced milk production per cow. Importing feed in the HSR farmlets increased milk production per cow and per hectare. Marginal milk production responses to additional feed (i.e., either pasture or imported supplementary feed) were between 0.8 and 1.2 kg of milk/kg of DM offered (73 to 97 g of fat and protein/kg of feed DM) and marginal response differences between feeds were explained by metabolizable energy content differences (0.08 kg of milk/MJ of metabolizable energy offered). The marginal milk production response to additional feed was quadratic, with the greatest milk production generated from the initial investment in feed; 119, 99, and 55 g of fat and protein were produced per kilogram of feed DM by reducing the annual feed deficit from 1.6 to 1.0, 1.0 to 0.5, and 0.5 to 0 t of DM, respectively. Economic modeling indicated that the marginal cost of milk produced from pasture resulting from applied N fertilizer was less than the milk price; therefore, strategic use of N fertilizer to increase pasture grown increased farm operating profit per hectare. In comparison, operating pro...
The effect of feeding to achieve differential growth rates in Holstein-Friesian (HF; n = 259) and Jersey (n = 430) heifers on time to puberty and first lactation milk production was investigated in a 3 x 2 factorial design. Holstein-Friesian and Jersey calves were reared to achieve a BW of 100 and 80 kg, respectively, at 100 d. At target weight, all calves were randomly allocated to one of 3 feeding treatments to achieve different growth rates. Holstein-Friesian and Jersey calves were fed fresh pasture to achieve average daily growth rates of 0.77, 0.53, or 0.37 kg of BW/d (HF) and 0.61, 0.48, or 0.30 kg of BW/d (Jersey), respectively. Period 1 (prepubertal) was imposed until HF and Jersey treatment groups averaged 200 and 165 kg of BW, respectively. Following period 1, HF and Jersey calves from each treatment group were randomly allocated to one of 2 feeding treatments to achieve average daily growth rates of 0.69 or 0.49 kg of BW/d (HF) and 0.58 and 0.43 kg of BW/d (Jersey), respectively. Period 2 (postpubertal) was imposed until 22 mo, when heifers were returned to their farms of origin. Body weight, body condition score, height, heart girth circumference (HGC), milk production, and fertility-related data were collected until the end of the third lactation. Time to reach puberty was negatively associated with level of feeding, and heifers attained puberty at the same BW (251 +/- 25.4 and 180 +/- 24.0 kg for HF and Jersey heifers, respectively). Heifers on high feed allowances during periods 1 and 2 were heavier, taller, and had greater HGC than their slower grown counterparts until 39 mo of age when height and HGC measurements stopped. Body weight differences remained until 51 mo, when measurements ceased. High feed allowance during period 1 (prepubertal) did not affect milk production during the first 2 lactations, but did reduce milk production in lactation 3. It is possible that the expected negative effect of accelerated pre-pubertal growth was masked by greater calving BW, as BW-corrected milk yield declined in both breeds with increasing prepubertal feed allowance. Growth rate during period 2 was positively correlated with first lactation milk production. Milk yield increased 7% in first lactation heifers on the high feed allowance, which resulted in higher growth rate during period 2. Milk production during subsequent lactations was not affected. Results suggest that accelerated prepubertal growth may reduce mammary development in grazing dairy cows, but this does not affect milk production in early lactations because of superior size. Body weight at calving and postpubertal growth rate management are important in first lactation milk production, but do not affect milk production in subsequent lactations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.