We report dissipative magnon-photon coupling caused by cavity Lenz effect, where the magnons in a magnet induce a rf current in the cavity, leading to a cavity back action that impedes the magnetization dynamics. This effect is revealed in our experiment as level attraction with a coalescence of hybridized magnon-photon modes, which is distinctly different from level repulsion with mode anticrossing caused by coherent magnon-photon coupling. We develop a method to control the interpolation of coherent and dissipative magnon-photon coupling, and observe a matching condition where the two effects cancel. Our work sheds light on the so-far hidden side of magnon-photon coupling, opening a new avenue for controlling and utilizing light-matter interactions.
We reveal the cooperative effect of coherent and dissipative magnon-photon couplings in an open cavity magnonic system, which leads to nonreciprocity with a considerably large isolation ratio and flexible controllability. Furthermore, we discover unidirectional invisibility for microwave propagation, which appears at the zero-damping condition for hybrid magnon-photon modes. A simple model is developed to capture the generic physics of the interference between coherent and dissipative couplings, which accurately reproduces the observations over a broad range of parameters. This general scheme could inspire methods to achieve nonreciprocity in other systems. Γ ZDC ω m ω c J Γe iπ ω c ω m J Γ ω m ω c Γe iπ ZDC ω m ω c J J ω m = ω c + 2JΓ α
A resistive coupling circuit is used to model the recently discovered dissipative coupling in a hybridized cavity photon-magnon system. With this model as a basis we have designed a planar cavity in which a controllable transition between level attraction and level repulsion can be achieved. This behaviour can be quantitatively understood using an LCR circuit model with a complex coupling strength. Our work therefore develops and verifies a circuit method to model level repulsion and level attraction and confirms the universality of dissipative coupling in the cavity photon-magnon system. The realization of both coherent and dissipative couplings in a planar cavity may provide new avenues for the design and adaptation of dissipatively coupled systems for practical applications in information processing.
The emerging field of cavity spintronics utilizes the cavity magnon polariton (CMP) induced by magnon Rabi oscillations. In contrast to a single-spin quantum system, such a cooperative spin dynamics in the linear regime is governed by the classical physics of harmonic oscillators. It makes the magnon Rabi frequency independent of the photon Fock state occupation, and thereby restricts the quantum application of CMP. Here we show that a feedback cavity architecture breaks the harmonic-oscillator restriction. By increasing the feedback photon number, we observe an increase in the Rabi frequency, accompanied with the evolution of CMP to a cavity magnon triplet and a cavity magnon quintuplet. We present a theory that explains these features. Our results reveal the physics of cooperative polariton dynamics in feedback-coupled cavities, and open up new avenues for exploiting the light–matter interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.