The textural properties of 5 seedless watermelon cultivars were assessed by descriptive analysis and the standard puncture test using a hollow probe with increased shearing properties. The use of descriptive analysis methodology was an effective means of quantifying watermelon sensory texture profiles for characterizing specific cultivars' characteristics. Of the 10 cultivars screened, 71% of the variation in the sensory attributes was measured using the 1st 2 principal components. Pairwise correlation of the hollow puncture probe and sensory parameters determined that initial slope, maximum force, and work after maximum force measurements all correlated well to the sensory attributes crisp and firm. These findings confirm that maximum force correlates well with not only firmness in watermelon, but crispness as well. The initial slope parameter also captures the sensory crispness of watermelon, but is not as practical to measure in the field as maximum force. The work after maximum force parameter is thought to reflect cellular arrangement and membrane integrity that in turn impact sensory firmness and crispness. Watermelon cultivar types were correctly predicted by puncture test measurements in heart tissue 87% of the time, although descriptive analysis was correct 54% of the time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.