We solve the ground state of the deuteron using a variational neural network ansatz for the wave function in momentum space. This ansatz provides a flexible representation of both the S and the D states, with relative errors in the energy which are within fractions of a percent of a full diagonalisation benchmark. We extend the previous work on this area in two directions. First, we study new architectures by adding more layers to the network and by exploring different connections between the states. Second, we provide a better estimate of the numerical uncertainty by taking into account the final oscillations at the end of the minimisation process. Overall, we find that the best performing architecture is the simple one-layer, state-independent network. Two-layer networks show indications of overfitting, in regions that are not probed by the fixed momentum basis where calculations are performed. In all cases, the error associated to the model oscillations around the real minimum is larger than the stochastic initialisation uncertainties. The conclusions that we draw can be generalised to other quantum mechanics settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.