How plants recognize pathogens and activate defense is still mysterious. Direct interaction between pathogen avirulence (Avr) proteins and plant disease resistance proteins is the exception rather than the rule. During infection, Cladosporium fulvum secretes Avr2 protein into the apoplast of tomato leaves and, in the presence of the extracellular leucine-rich repeat receptor-like Cf-2 protein, triggers a hypersensitive response (HR) that also requires the extracellular tomato cysteine protease Rcr3. We show here that Avr2 binds and inhibits Rcr3 and propose that the Rcr3-Avr2 complex enables the Cf-2 protein to activate an HR.
Plants lack the seemingly unlimited receptor diversity of a somatic adaptive immune system as found in vertebrates and rely on only a relatively small set of innate immune receptors to resist a myriad of pathogens. Here, we show that disease-resistant tomato plants use an efficient mechanism to leverage the limited nonself recognition capacity of their innate immune system. We found that the extracellular plant immune receptor protein Cf-2 of the red currant tomato (Solanum pimpinellifolium) has acquired dual resistance specificity by sensing perturbations in a common virulence target of two independently evolved effectors of a fungus and a nematode. The Cf-2 protein, originally identified as a monospecific immune receptor for the leaf mold fungus Cladosporium fulvum, also mediates disease resistance to the root parasitic nematode Globodera rostochiensis pathotype Ro1-Mierenbos. The Cf-2-mediated dual resistance is triggered by effector-induced perturbations of the apoplastic Rcr3 pim protein of S. pimpinellifolium. Binding of the venom allergen-like effector protein Gr-VAP1 of G. rostochiensis to Rcr3 pim perturbs the active site of this papain-like cysteine protease. In the absence of the Cf-2 receptor, Rcr3 pim increases the susceptibility of tomato plants to G. rostochiensis, thus showing its role as a virulence target of these nematodes. Furthermore, both nematode infection and transient expression of Gr-VAP1 in tomato plants harboring Cf-2 and Rcr3 pim trigger a defense-related programmed cell death in plant cells. Our data demonstrate that monitoring host proteins targeted by multiple pathogens broadens the spectrum of disease resistances mediated by single plant immune receptors.parasitism | secretions | SCP/TAPS proteins | hypersensitive response
Transformation of the diploid oomycete plant pathogen Phytophthora infestans with antisense, sense, and promoter-less constructs of the coding sequence of the elicitin gene inf1 resulted in transcriptional silencing of both the transgenes and the endogenous gene. Since heterokaryons obtained by somatic fusion of an inf1-silenced transgenic strain and a wild-type strain displayed stable gene silencing, inf1 silencing is dominant and acts in trans. Inf1 remained silenced in nontransgenic homokaryotic progeny from the silenced heterokaryons, thereby demonstrating that the presence of transgenes is not essential for maintaining the silenced status of the endogenous inf1 gene. These findings support a model reminiscent of paramutation and involving a trans-acting factor that is capable of transferring a silencing signal between nuclei.
The plant pathogen Botrytis cinerea can infect undamaged plant tissue directly by penetration of the cuticle. This penetration has been suggested to be enzyme-mediated, and an important role for cutinase in the infection process has been proposed. In this study the expression of the cutinase encoding gene cutA of B. cinerea was analyzed using a cutA promoter-GUS reporter gene fusion. Transformants containing the fusion construct were examined for GUS expression on gerbera flowers and tomato fruits. High GUS activity was detected from the onset of conidial germination and during penetration into epidermal cells, indicating that cutA is expressed during the early stages of infection. To determine the biological relevance of cutinase A for successful penetration, cutinase A-deficient mutants were constructed by gene disruption. Pathogenicity of two transformants lacking a functional cutA gene was studied on gerbera flowers and tomato fruits. Their ability to penetrate and cause symptoms was unaltered compared to the wild-type strain. These results exclude an important role for cutinase A during direct penetration of host tissue by B. cinerea.
In Phytophthora infestans, a cluster of three dominant avirulence genes is located on the distal part of linkage group VIII. In a mapping population from a cross between two Dutch field isolates, probe M5.1, derived from an amplified fragment length polymorphism (AFLP) marker linked to the Avr3-Avr10-Avr11 cluster, hybridized only to DNA from the parent and F1 progeny that is avirulent on potato lines carrying the R3, R10, and R11 resistance gene. In the virulent parent and the virulent progeny, no M5.1 homologue was detected, demonstrating a deletion on that part of linkage group VIII. P. infestans is diploid, so the avirulent strains must be hemizygous for the region concerned. A similar situation was found in another mapping population from two Mexican strains. The deletion was also found to occur in many field isolates. In a large set of unique isolates collected in The Netherlands from 1980 to 1991, 37% had no M5.1 homologue and the deletion correlated strongly with gain of virulence on potato lines carrying R3, R10, and R11. Also, in some old isolates that belong to a single clonal lineage (US-1) and are thus highly homogenous, deletions at the M5.1 locus were detected, indicating that this region is unstable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.