We describe a technique for connecting a nanometer-scale gold grain to leads by atomic-scale gold point contacts. These devices differ from previous metallic quantum dots in that the conducting channels are relatively well-transmitting. We investigate the dependence of the Coulomb blockade on contact resistance. The high-resistance devices display Coulomb blockade and the low-resistance devices display a zero-bias conductance dip, both in quantitative agreement with theory. We find that in the intermediate regime, where the sample resistance is close to h/e 2 , the I-V curve displays a Coulomb staircase with symmetric contact capacitances.
Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.